• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jcinvestThe Journal of Clinical InvestigationCurrent IssueArchiveSubscriptionAbout the Journal
J Clin Invest. Dec 1995; 96(6): 2882–2891.
PMCID: PMC185999

Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein.


Our group has previously demonstrated that oxidized phospholipids in mildly oxidized LDL (MM-LDL) produced by oxidation with lipoxygenase, iron, or cocultures of artery wall cells increase monocyte-endothelial interactions and this sequence of events is blocked by HDL. To obtain further insight into the mechanism by which HDL abolishes the activity of MM-LDL we investigated the effect of the HDL-associated ester hydrolase paraoxonase (PON). Treatment of MM-LDL with purified PON significantly reduced the ability of MM-LDL to induce monocyte-endothelial interactions. Inactivation of PON by pretreating HDL with heat or EDTA reduced the ability of HDL to inhibit LDL modification. HPLC analysis of phospholipids isolated from MM-LDL before and after treatment with purified PON showed that the 270 nm absorbance of phospholipids was decreased, while no effect was observed on 235 nm absorbance. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (Ox-PAPC) and specific fractions of Ox-PAPC isolated by HPLC induced the same monocyte-endothelial interactions as did MM-LDL. Biologically active and inactive HPLC fractions of Ox-PAPC were compared by fast atom bombardment-mass spectrometry which revealed that active fractions possessed ions with a mass to charge [correction of change] ratio greater than native PAPC by multiples of 16 D suggesting the addition of 3 and 4 oxygen atoms to PAPC. Comparison of Ox-PAPC by fast atom bombardment-mass spectrometry before and after PON treatment showed that PON destroyed these multi-oxygenated molecules found in biologically active fractions of Ox-PAPC. These results suggest that PON in HDL may protect against the induction of inflammatory responses in artery wall cells by destroying biologically active lipids in mildly oxidized LDL.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. [PubMed]
  • Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. [PMC free article] [PubMed]
  • Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet. 1994 Sep 17;344(8925):793–795. [PubMed]
  • Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993 Jul;92(1):471–478. [PMC free article] [PubMed]
  • Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5134–5138. [PMC free article] [PubMed]
  • Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H, et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest. 1991 Dec;88(6):2039–2046. [PMC free article] [PubMed]
  • Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. [PMC free article] [PubMed]
  • Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254–257. [PubMed]
  • Cathcart MK, McNally AK, Morel DW, Chisolm GM., 3rd Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin. J Immunol. 1989 Mar 15;142(6):1963–1969. [PubMed]
  • Cathcart MK, McNally AK, Chisolm GM. Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. J Lipid Res. 1991 Jan;32(1):63–70. [PubMed]
  • Hessler JR, Robertson AL, Jr, Chisolm GM., 3rd LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis. 1979 Mar;32(3):213–229. [PubMed]
  • Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986 Sep-Oct;6(5):505–510. [PubMed]
  • Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis. 1983 Mar-Apr;3(2):149–159. [PubMed]
  • Brown MS, Goldstein JL. Atherosclerosis. Scavenging for receptors. Nature. 1990 Feb 8;343(6258):508–509. [PubMed]
  • Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Jr, Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989 Jan;79(1):8–15. [PubMed]
  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977 May;62(5):707–714. [PubMed]
  • Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta. 1990 May 22;1044(2):275–283. [PubMed]
  • Maier JA, Barenghi L, Pagani F, Bradamante S, Comi P, Ragnotti G. The protective role of high-density lipoprotein on oxidized-low-density-lipoprotein-induced U937/endothelial cell interactions. Eur J Biochem. 1994 Apr 1;221(1):35–41. [PubMed]
  • Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988 Jul 8;241(4862):215–218. [PubMed]
  • Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. [PMC free article] [PubMed]
  • Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. [PMC free article] [PubMed]
  • Chemnitius JM, Losch H, Losch K, Zech R. Organophosphate detoxicating hydrolases in different vertebrate species. Comp Biochem Physiol C. 1983;76(1):85–93. [PubMed]
  • Saha N, Roy AC, Teo SH, Tay JS, Ratnam SS. Influence of serum paraoxonase polymorphism on serum lipids and apolipoproteins. Clin Genet. 1991 Oct;40(4):277–282. [PubMed]
  • Mackness MI, Arrol S, Abbott CA, Durrington PN. Is paraoxonase related to atherosclerosis. Chem Biol Interact. 1993 Jun;87(1-3):161–171. [PubMed]
  • Mackness MI, Walker CH, Carlson LA. Low A-esterase activity in serum of patients with fish-eye disease. Clin Chem. 1987 Apr;33(4):587–588. [PubMed]
  • Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 1991 Jul 29;286(1-2):152–154. [PubMed]
  • Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforini DM, McIntyre TM, Du BN, Fogelman AM, Berliner JA. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Feb;95(2):774–782. [PMC free article] [PubMed]
  • Gan KN, Smolen A, Eckerson HW, La Du BN. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos. 1991 Jan-Feb;19(1):100–106. [PubMed]
  • Navab M, Hough GP, Stevenson LW, Drinkwater DC, Laks H, Fogelman AM. Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. J Clin Invest. 1988 Dec;82(6):1853–1863. [PMC free article] [PubMed]
  • Fogelman AM, Elahi F, Sykes K, Van Lenten BJ, Territo MC, Berliner JA. Modification of the Recalde method for the isolation of human monocytes. J Lipid Res. 1988 Sep;29(9):1243–1247. [PubMed]
  • HAVEL RJ, EDER HA, BRAGDON JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. [PMC free article] [PubMed]
  • BLIGH EG, DYER WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. [PubMed]
  • Kaluzny MA, Duncan LA, Merritt MV, Epps DE. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985 Jan;26(1):135–140. [PubMed]
  • Stafforini DM, McIntyre TM, Prescott SM. Platelet-activating factor acetylhydrolase from human plasma. Methods Enzymol. 1990;187:344–357. [PubMed]
  • Simeon V, Pavković E. Heat inactivation of paraoxonase and arylesterase activities in human and rabbit serum. Chem Biol Interact. 1993 Jun;87(1-3):103–107. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Gopaul NK, Nourooz-Zadeh J, Mallet AI, Anggård EE. Formation of F2-isoprostanes during aortic endothelial cell-mediated oxidation of low density lipoprotein. FEBS Lett. 1994 Jul 18;348(3):297–300. [PubMed]
  • Banerjee M, Kang KH, Morrow JD, Roberts LJ, Newman JH. Effects of a novel prostaglandin, 8-epi-PGF2 alpha, in rabbit lung in situ. Am J Physiol. 1992 Sep;263(3 Pt 2):H660–H663. [PubMed]
  • Fukunaga M, Takahashi K, Badr KF. Vascular smooth muscle actions and receptor interactions of 8-iso-prostaglandin E2, an E2-isoprostane. Biochem Biophys Res Commun. 1993 Sep 15;195(2):507–515. [PubMed]
  • Stremler KE, Stafforini DM, Prescott SM, McIntyre TM. Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates. J Biol Chem. 1991 Jun 15;266(17):11095–11103. [PubMed]
  • Stremler KE, Stafforini DM, Prescott SM, Zimmerman GA, McIntyre TM. An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma. J Biol Chem. 1989 Apr 5;264(10):5331–5334. [PubMed]
  • Stafforini DM, Zimmerman GA, McIntyre TM, Prescott SM. The platelet-activating factor acetylhydrolase from human plasma prevents oxidative modification of low-density lipoprotein. Trans Assoc Am Physicians. 1992;105:44–63. [PubMed]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...