• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of amjpatholAmerican Journal of Pathology For AuthorsAmerican Journal of Pathology SubscribeAmerican Journal of Pathology SearchAmerican Journal of Pathology Current IssueAmerican Journal of Pathology About the JournalAmerican Journal of Pathology
Am J Pathol. Jan 1997; 150(1): 235–246.
PMCID: PMC1858503

Migration inhibitory factor expression in experimentally induced endotoxemia.


Macrophage migration inhibitory factor (MIF) is an important constituent of the host response to stress and infection and is the first mediator that has been identified to be released from immune cells upon stimulation with glucocorticoids. MIF also has been shown to be secreted from the anterior pituitary gland, monocytes/macrophages, and T cells activated by various proinflammatory stimuli. Once released, MIF acts to counter-regulate the inhibitory effect of glucocorticoids on inflammatory cytokine production. To characterize more precisely the role of MIF in the host response to infection, we undertook a systematic analysis of MIF expression in various organs of the rat after endotoxin (lipopolysaccharide) administration. MIF protein and mRNA were analyzed by immunohistochemistry and in situ hybridization, respectively. MIF was found to be expressed constitutively in organs such as the lung, liver, kidney, spleen, adrenal gland, and skin. Significant quantities of MIF protein were detected preformed in various cell types and appeared to be released as a consequence of endotoxemia. In virtually all tissues examined, the loss of MIF protein 6 hours after lipopolysaccharide administration was accompanied by the induction of MIF mRNA and, at 24 hours, by the restoration of immunoreactive, intracellular MIF. The constitutive production of MIF by several cell and tissue types together with its rapid release from intracellular pools distinguishes MIF from other cytokines or hormonal mediators and significantly expands the physiological role of this unique counter-regulator of glucocorticoid action.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (5.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • GEORGE M, VAUGHAN JH. In vitro cell migration as a model for delayed hypersensitivity. Proc Soc Exp Biol Med. 1962 Nov;111:514–521. [PubMed]
  • Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966 Jul 1;153(3731):80–82. [PubMed]
  • David JR. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A. 1966 Jul;56(1):72–77. [PMC free article] [PubMed]
  • Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993 Oct 21;365(6448):756–759. [PubMed]
  • Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995 Sep 7;377(6544):68–71. [PubMed]
  • Calandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med. 1994 Jun 1;179(6):1895–1902. [PMC free article] [PubMed]
  • Bernhagen J, Bacher M, Calandra T, Metz CN, Doty SB, Donnelly T, Bucala R. An essential role for macrophage migration inhibitory factor in the tuberculin delayed-type hypersensitivity reaction. J Exp Med. 1996 Jan 1;183(1):277–282. [PMC free article] [PubMed]
  • Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7849–7854. [PMC free article] [PubMed]
  • Nishino T, Bernhagen J, Shiiki H, Calandra T, Dohi K, Bucala R. Localization of macrophage migration inhibitory factor (MIF) to secretory granules within the corticotrophic and thyrotrophic cells of the pituitary gland. Mol Med. 1995 Nov;1(7):781–788. [PMC free article] [PubMed]
  • Galat A, Rivière S, Bouet F. Purification of macrophage migration inhibitory factor (MIF) from bovine brain cytosol. FEBS Lett. 1993 Mar 22;319(3):233–236. [PubMed]
  • Wistow GJ, Shaughnessy MP, Lee DC, Hodin J, Zelenka PS. A macrophage migration inhibitory factor is expressed in the differentiating cells of the eye lens. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1272–1275. [PMC free article] [PubMed]
  • Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R. Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry. 1994 Nov 29;33(47):14144–14155. [PubMed]
  • Sakai M, Nishihira J, Hibiya Y, Koyama Y, Nishi S. Glutathione binding rat liver 13k protein is the homologue of the macrophage migration inhibitory factor. Biochem Mol Biol Int. 1994 Jun;33(3):439–446. [PubMed]
  • Mitchell R, Bacher M, Bernhagen J, Pushkarskaya T, Seldin MF, Bucala R. Cloning and characterization of the gene for mouse macrophage migration inhibitory factor (MIF). J Immunol. 1995 Apr 15;154(8):3863–3870. [PubMed]
  • Lan HY, Mu W, NG YY, Nikolic-Paterson DJ, Atkins RC. A simple, reliable, and sensitive method for nonradioactive in situ hybridization: use of microwave heating to improve hybridization efficiency and preserve tissue morphology. J Histochem Cytochem. 1996 Mar;44(3):281–287. [PubMed]
  • Tso JY, Sun XH, Kao TH, Reece KS, Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. [PMC free article] [PubMed]
  • Chensue SW, Terebuh PD, Remick DG, Scales WE, Kunkel SL. In vivo biologic and immunohistochemical analysis of interleukin-1 alpha, beta and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression, and glucocorticoid effects. Am J Pathol. 1991 Feb;138(2):395–402. [PMC free article] [PubMed]
  • Mathison JC, Ulevitch RJ. Uptake and subcellular localization of bacterial lipopolysaccharide in the adrenal gland. Am J Pathol. 1985 Jul;120(1):79–86. [PMC free article] [PubMed]
  • Kameda K, Sato K. Regulation of IL-1 alpha expression in human keratinocytes: transcriptional activation of the IL-1 alpha gene by TNF-alpha, LPS, and IL-1 alpha. Lymphokine Cytokine Res. 1994 Feb;13(1):29–35. [PubMed]
  • Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. [PubMed]
  • Freudenberg N, Freudenberg MA, Bandara K, Galanos C. Distribution and localization of endotoxin in the reticulo-endothelial system (RES) and in the main vessels of the rat during shock. Pathol Res Pract. 1985 Mar;179(4-5):517–527. [PubMed]
  • Ge Y, Ezzell RM, Tompkins RG, Warren HS. Cellular distribution of endotoxin after injection of chemically purified lipopolysaccharide differs from that after injection of live bacteria. J Infect Dis. 1994 Jan;169(1):95–104. [PubMed]
  • Wan Y, Freeswick PD, Khemlani LS, Kispert PH, Wang SC, Su GL, Billiar TR. Role of lipopolysaccharide (LPS), interleukin-1, interleukin-6, tumor necrosis factor, and dexamethasone in regulation of LPS-binding protein expression in normal hepatocytes and hepatocytes from LPS-treated rats. Infect Immun. 1995 Jul;63(7):2435–2442. [PMC free article] [PubMed]
  • Bricio T, Molina A, Martin A, Mampaso F. In vitro modulation of interleukin-1 beta secretion by cultured rat doxorubicin-stimulated whole glomeruli and dissociated mesangial glomerular cells. Immunology. 1994 Jan;81(1):53–57. [PMC free article] [PubMed]
  • Ardaillou R, Baud L. Production et activité proinflammatoire du facteur de nécrose tumorale alpha dans le glomérule. Bull Acad Natl Med. 1995 Jan;179(1):103–116. [PubMed]
  • Lan HY, Mu W, Yang N, Meinhardt A, Nikolic-Paterson DJ, Ng YY, Bacher M, Atkins RC, Bucala R. De Novo renal expression of macrophage migration inhibitory factor during the development of rat crescentic glomerulonephritis. Am J Pathol. 1996 Oct;149(4):1119–1127. [PMC free article] [PubMed]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...