• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. Nov 1990; 56(11): 3360–3367.
PMCID: PMC184954

Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads.


Pseudomonas aeruginosa PAO and 15 other strains of this species synthesized a polyester with 3-hydroxydecanoate as the main constituent (55 to 76 mol%) if the cells were cultivated in the presence of gluconate and if the nitrogen source was exhausted; 3-hydroxyhexanoate, 3-hydroxyoctanoate, and 3-hydroxydodecanoate were minor constituents of the polymer. The polymer was deposited in granules within the cell and amounted to 70% of the cell dry matter in some strains. Among 55 different strains of 41 Pseudomonas species tested, P. aureofaciens (21.6% of cellular dry matter), P. citronellolis (78.0%), P. chlororaphis (8.5%), P. marginalis (11.4%), P. mendocina (50.7%), P. putida (33.5%), and Pseudomonas sp. strain DSM 1650 (54.6%) accumulated this type of polymer at significant levels (greater than 5%) during cultivation on gluconate. In two strains of P. facilis and P. fluorescens, as well as in one strain of P. syringae, this polymer was detected as a minor constituent (much less than 5%). All other strains accumulated either poly(3-hydroxybutyrate) or a polymer consisting mainly of 3-hydroxyoctanoate with octanoate but no polyester with gluconate as the carbon source. Only a few species (e.g., P. stutzeri) were unable to accumulate poly(hydroxyalkanoic acids) (PHA) at all. These results indicated that the formation of PHA depends on a pathway which is distinct from all other known PHA-biosynthetic pathways. The polyesters accumulated by gluconate- or octanoate-grown cells of recombinant strains of P. aeruginosa and P. putida, which harbored the Alcaligenes eutrophus poly(3-hydroxybutyrate)biosynthetic genes, contained 3-hydroxybutyrate as an additional constituent.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brandl H, Knee EJ, Jr, Fuller RC, Gross RA, Lenz RW. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol. 1989 Feb;11(1):49–55. [PubMed]
  • Brandl H, Gross RA, Lenz RW, Fuller RC. Pseudomonas oleovorans as a Source of Poly(beta-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl Environ Microbiol. 1988 Aug;54(8):1977–1982. [PMC free article] [PubMed]
  • de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol. 1983 May;154(2):870–878. [PMC free article] [PubMed]
  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA. Accumulation of a Polyhydroxyalkanoate Containing Primarily 3-Hydroxydecanoate from Simple Carbohydrate Substrates by Pseudomonas sp. Strain NCIMB 40135. Appl Environ Microbiol. 1990 Nov;56(11):3354–3359. [PMC free article] [PubMed]
  • Huisman GW, de Leeuw O, Eggink G, Witholt B. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol. 1989 Aug;55(8):1949–1954. [PMC free article] [PubMed]
  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl Environ Microbiol. 1988 Dec;54(12):2924–2932. [PMC free article] [PubMed]
  • Peoples OP, Sinskey AJ. Poly-beta-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem. 1989 Sep 15;264(26):15293–15297. [PubMed]
  • Peoples OP, Sinskey AJ. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem. 1989 Sep 15;264(26):15298–15303. [PubMed]
  • SCHLEGEL HG, KALTWASSER H, GOTTSCHALK G. [A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies]. Arch Mikrobiol. 1961;38:209–222. [PubMed]
  • Schubert P, Steinbüchel A, Schlegel HG. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988 Dec;170(12):5837–5847. [PMC free article] [PubMed]
  • Slater SC, Voige WH, Dennis DE. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol. 1988 Oct;170(10):4431–4436. [PMC free article] [PubMed]
  • Spurr AR. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. [PubMed]
  • Steinbüchel A, Schlegel HG. A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem. 1984 Jun 15;141(3):555–564. [PubMed]
  • Walther-Mauruschat A, Aragno M, Mayer F, Schlegel HG. Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch Microbiol. 1977 Aug 26;114(2):101–110. [PubMed]
  • Whiting PH, Midgley M, Dawes EA. The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Feb;92(2):304–310. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...