• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plosonePLoS OneView this ArticleSubmit to PLoSGet E-mail AlertsContact UsPublic Library of Science (PLoS)
PLoS ONE. 2007; 2(2): e259.
Published online Feb 28, 2007. doi:  10.1371/journal.pone.0000259
PMCID: PMC1800344

A Rapid Sound-Action Association Effect in Human Insular Cortex

Tecumseh Fitch, Academic Editor

Abstract

Background

Learning to play a musical piece is a prime example of complex sensorimotor learning in humans. Recent studies using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) indicate that passive listening to melodies previously rehearsed by subjects on a musical instrument evokes differential brain activation as compared with unrehearsed melodies. These changes were already evident after 20–30 minutes of training. The exact brain regions involved in these differential brain responses have not yet been delineated.

Methodology/Principal Finding

Using functional MRI (fMRI), we investigated subjects who passively listened to simple piano melodies from two conditions: In the ‘actively learned melodies’ condition subjects learned to play a piece on the piano during a short training session of a maximum of 30 minutes before the fMRI experiment, and in the ‘passively learned melodies’ condition subjects listened passively to and were thus familiarized with the piece. We found increased fMRI responses to actively compared with passively learned melodies in the left anterior insula, extending to the left fronto-opercular cortex. The area of significant activation overlapped the insular sensorimotor hand area as determined by our meta-analysis of previous functional imaging studies.

Conclusions/Significance

Our results provide evidence for differential brain responses to action-related sounds after short periods of learning in the human insular cortex. As the hand sensorimotor area of the insular cortex appears to be involved in these responses, re-activation of movement representations stored in the insular sensorimotor cortex may have contributed to the observed effect. The insular cortex may therefore play a role in the initial learning phase of action-perception associations.


Articles from PLoS ONE are provided here courtesy of Public Library of Science

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...