• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Sep 1997; 179(18): 5928–5934.
PMCID: PMC179486

The chlamydial EUO gene encodes a histone H1-specific protease.


Chlamydia trachomatis is an obligate intracellular pathogen, long recognized as an agent of blinding eye disease and more recently as a common sexually transmitted infection. Recently, two eukaryotic histone H1-like proteins, designated Hc1 and Hc2, have been identified in Chlamydia. Expression of Hc1 in recombinant Escherichia coli produces chromatin condensation similar to nucleoid condensation observed late in the parasite's own life cycle. In contrast, chromatin decondensation, observed during the early life cycle, accompanies down-regulation and nondetection of Hc1 and Hc2 among internalized organisms. We reasoned that the early upstream open reading frame (EUO) gene product might play a role in Hc1 degradation and nucleoid decondensation since it is expressed very early in the chlamydial life cycle. To explore this possibility, we fused the EUO coding region between amino acids 4 and 177 from C. trachomatis serovar Lz with glutathione S-transferase (GST) and examined the effects of fusion protein on Hc1 in vitro. The purified fusion protein was able to digest Hc1 completely within 1 h at 37 degrees C. However, GST alone exhibited no Hc1-specific proteolytic activity. The chlamydial EUO-GST gene product also cleaves very-lysine-rich calf thymus histone H1 and chicken erythrocyte histone H5 but displays no measurable activity towards core histones H2A, H2B, H3, and H4 or chlamydial RNA polymerase alpha-subunit. This proteolytic activity appears sensitive to the serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF) and aspartic protease inhibitor pepstatin but resistant to high temperature and other broad-spectrum protease inhibitors. The proteolytic activity specified by the EUO-GST fusion product selectively digested the C-terminal portion of chlamydial Hc1, the domain involved in DNA binding, while leaving the N terminus intact. At a molar equivalent ratio of 1:1 between Hc1 and DNA, the EUO gene product cleaves Hc1 complexed to DNA and this cleavage appears sufficient to initiate dissociation of DNA-Hc1 complexes. However, at a higher molar equivalent ratio of Hc1/DNA (10:1), there is partial protection conferred upon Hc1 to an extent that prevents dissociation of DNA-Hc1 complexes.

Full Text

The Full Text of this article is available as a PDF (2.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Allan J, Cowling GJ, Harborne N, Cattini P, Craigie R, Gould H. Regulation of the higher-order structure of chromatin by histones H1 and H5. J Cell Biol. 1981 Aug;90(2):279–288. [PMC free article] [PubMed]
  • Barry CE, 3rd, Hayes SF, Hackstadt T. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science. 1992 Apr 17;256(5055):377–379. [PubMed]
  • Barry CE, 3rd, Brickman TJ, Hackstadt T. Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol Microbiol. 1993 Jul;9(2):273–283. [PubMed]
  • Brickman TJ, Barry CE, 3rd, Hackstadt T. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J Bacteriol. 1993 Jul;175(14):4274–4281. [PMC free article] [PubMed]
  • Carrillo-Martinez Y, Setlow P. Properties of Bacillus subtilis small, acid-soluble spore proteins with changes in the sequence recognized by their specific protease. J Bacteriol. 1994 Sep;176(17):5357–5363. [PMC free article] [PubMed]
  • Christiansen G, Pedersen LB, Koehler JE, Lundemose AG, Birkelund S. Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA. J Bacteriol. 1993 Mar;175(6):1785–1795. [PMC free article] [PubMed]
  • Costerton JW, Poffenroth L, Wilt JC, Kordová N. Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can J Microbiol. 1976 Jan;22(1):16–28. [PubMed]
  • Friis RR. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J Bacteriol. 1972 May;110(2):706–721. [PMC free article] [PubMed]
  • Gu L, Wenman WM, Remacha M, Meuser R, Coffin J, Kaul R. Chlamydia trachomatis RNA polymerase alpha subunit: sequence and structural analysis. J Bacteriol. 1995 May;177(9):2594–2601. [PMC free article] [PubMed]
  • Hackstadt T, Baehr W, Ying Y. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3937–3941. [PMC free article] [PubMed]
  • Hackstadt T, Brickman TJ, Barry CE, 3rd, Sager J. Diversity in the Chlamydia trachomatis histone homologue Hc2. Gene. 1993 Sep 30;132(1):137–141. [PubMed]
  • Hatch TP, Allan I, Pearce JH. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol. 1984 Jan;157(1):13–20. [PMC free article] [PubMed]
  • Hunter AJ, Cary PD. Preparation of chromosomal protein A24 (uH2A) by denaturing gel filtration and preparation of its free nonhistone component ubiquitin by ion-exchange chromatography. Anal Biochem. 1985 Nov 1;150(2):394–402. [PubMed]
  • Kaul R, Tao S, Wenman WM. Interspecies structural diversity among chlamydial genes encoding histone H1. Gene. 1992 Mar 1;112(1):129–132. [PubMed]
  • Kaul R, Allen M, Bradbury EM, Wenman WM. Sequence specific binding of chlamydial histone H1-like protein. Nucleic Acids Res. 1996 Aug 1;24(15):2981–2989. [PMC free article] [PubMed]
  • Pedersen LB, Birkelund S, Christiansen G. Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro. Mol Microbiol. 1994 Mar;11(6):1085–1098. [PubMed]
  • Pedersen LB, Birkelund S, Holm A, Ostergaard S, Christiansen G. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain. J Bacteriol. 1996 Feb;178(4):994–1002. [PMC free article] [PubMed]
  • Perara E, Ganem D, Engel JN. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone H1. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2125–2129. [PMC free article] [PubMed]
  • Remacha M, Kaul R, Sherburne R, Wenman WM. Functional domains of chlamydial histone H1-like protein. Biochem J. 1996 Apr 15;315(Pt 2):481–486. [PMC free article] [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [PubMed]
  • Takashima K, Kawashima S, Imahori K. Reconstitution of compact polynucleosomes and comparison of the functions of histones H1 and H5. J Biochem. 1984 Oct;96(4):1071–1078. [PubMed]
  • Tao S, Kaul R, Wenman WM. Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis. J Bacteriol. 1991 May;173(9):2818–2822. [PMC free article] [PubMed]
  • Wenman WM, Meuser RU. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes. J Bacteriol. 1986 Feb;165(2):602–607. [PMC free article] [PubMed]
  • Wichlan DG, Hatch TP. Identification of an early-stage gene of Chlamydia psittaci 6BC. J Bacteriol. 1993 May;175(10):2936–2942. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...