• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Sep 1997; 179(18): 5777–5782.
PMCID: PMC179466

The modified nucleoside 2-methylthio-N6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes.

Abstract

The virulence of the human pathogen Shigella flexneri is dependent on both chromosome- and large-virulence-plasmid-encoded genes. A kanamycin resistance cassette mutation in the miaA gene (miaA::Km Sma), which encodes the tRNA N6-isopentyladenosine (i6A37) synthetase and is involved in the first step of the synthesis of the modified nucleoside 2-methylthio-N6-isopentenyladenosine (ms2i6A), was transferred to the chromosome of S. flexneri 2a by phage P1 transduction. In the wild-type bacterium, ms2i6A37 is present in position 37 (next to and 3' of the anticodon) in a subset of tRNA species-reading codons starting with U (except tRNA(Ser) species SerI and SerV). The miaA::Km Sma mutant of S. flexneri accordingly lacked ms2i6A37 in its tRNA. In addition, the mutant strains showed reduced expression of the virulence-related genes ipaB, ipaC, ipaD, virG, and virF, accounting for sixfold-reduced contact hemolytic activity and a delayed response in the focus plaque assay. A cloned sequence resulting from PCR amplification of the wild-type Shigella chromosome and exhibiting 99% homology with the nucleotide sequence of the Escherichia coli miaA gene complemented the virulence-associated phenotypes as well as the level of the modified nucleoside ms2i6A in the tRNA of the miaA mutants. In the miaA mutant, the level of the virulence-associated protein VirF was reduced 10-fold compared with the wild type. However, the levels of virF mRNA were identical in the mutant and in the wild type. These findings suggest that a posttranscriptional mechanism influenced by the presence of the modified nucleoside ms2i6A in the tRNA is involved in the expression of the virF gene. The role of the miaA gene in the virulence of other Shigella species and in enteroinvasive E. coli was further generalized.

Full Text

The Full Text of this article is available as a PDF (690K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adler B, Sasakawa C, Tobe T, Makino S, Komatsu K, Yoshikawa M. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol Microbiol. 1989 May;3(5):627–635. [PubMed]
  • Allaoui A, Mounier J, Prévost MC, Sansonetti PJ, Parsot C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol Microbiol. 1992 Jun;6(12):1605–1616. [PubMed]
  • Andrews GP, Hromockyj AE, Coker C, Maurelli AT. Two novel virulence loci, mxiA and mxiB, in Shigella flexneri 2a facilitate excretion of invasion plasmid antigens. Infect Immun. 1991 Jun;59(6):1997–2005. [PMC free article] [PubMed]
  • Baudry B, Kaczorek M, Sansonetti PJ. Nucleotide sequence of the invasion plasmid antigen B and C genes (ipaB and ipaC) of Shigella flexneri. Microb Pathog. 1988 May;4(5):345–357. [PubMed]
  • Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs with suppressor activity from tobacco plants. EMBO J. 1984 Feb;3(2):351–356. [PMC free article] [PubMed]
  • Beier H, Barciszewska M, Sickinger HD. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 1984 May;3(5):1091–1096. [PMC free article] [PubMed]
  • Bernardini ML, Fontaine A, Sansonetti PJ. The two-component regulatory system ompR-envZ controls the virulence of Shigella flexneri. J Bacteriol. 1990 Nov;172(11):6274–6281. [PMC free article] [PubMed]
  • Bernardini ML, Mounier J, d'Hauteville H, Coquis-Rondon M, Sansonetti PJ. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A. 1989 May;86(10):3867–3871. [PMC free article] [PubMed]
  • Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog Nucleic Acid Res Mol Biol. 1995;50:263–338. [PubMed]
  • Bouadloun F, Srichaiyo T, Isaksson LA, Björk GR. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol. 1986 Jun;166(3):1022–1027. [PMC free article] [PubMed]
  • Buck M, Ames BN. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell. 1984 Feb;36(2):523–531. [PubMed]
  • Buck M, Griffiths E. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic Acids Res. 1982 Apr 24;10(8):2609–2624. [PMC free article] [PubMed]
  • Buysse JM, Stover CK, Oaks EV, Venkatesan M, Kopecko DJ. Molecular cloning of invasion plasmid antigen (ipa) genes from Shigella flexneri: analysis of ipa gene products and genetic mapping. J Bacteriol. 1987 Jun;169(6):2561–2569. [PMC free article] [PubMed]
  • Connolly DM, Winkler ME. Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J Bacteriol. 1989 Jun;171(6):3233–3246. [PMC free article] [PubMed]
  • Connolly DM, Winkler ME. Structure of Escherichia coli K-12 miaA and characterization of the mutator phenotype caused by miaA insertion mutations. J Bacteriol. 1991 Mar;173(5):1711–1721. [PMC free article] [PubMed]
  • Diaz I, Pedersen S, Kurland CG. Effects of miaA on translation and growth rates. Mol Gen Genet. 1987 Jul;208(3):373–376. [PubMed]
  • Dorman CJ, Ni Bhriain N, Higgins CF. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature. 1990 Apr 19;344(6268):789–792. [PubMed]
  • Durand JM, Okada N, Tobe T, Watarai M, Fukuda I, Suzuki T, Nakata N, Komatsu K, Yoshikawa M, Sasakawa C. vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J Bacteriol. 1994 Aug;176(15):4627–4634. [PMC free article] [PubMed]
  • Ericson JU, Björk GR. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol. 1986 Jun;166(3):1013–1021. [PMC free article] [PubMed]
  • Formal SB, Gemski P, Baron LS, Labrec EH. A Chromosomal Locus Which Controls the Ability of Shigella flexneri to Evoke Keratoconjunctivitis. Infect Immun. 1971 Jan;3(1):73–79. [PMC free article] [PubMed]
  • Frey B, Jänel G, Michelsen U, Kersten H. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. J Bacteriol. 1989 Mar;171(3):1524–1530. [PMC free article] [PubMed]
  • Gehrke CW, Kuo KC. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989 Jun 2;471:3–36. [PubMed]
  • Gray J, Wang J, Gelvin SB. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. J Bacteriol. 1992 Feb;174(4):1086–1098. [PMC free article] [PubMed]
  • Griffiths E, Humphreys J. Alterations in tRNAs containing 2-methylthio-N6-(delta2-isopentenyl)-adenosine during growth of enteropathogenic Escherichia coli in the presence of iron-binding proteins. Eur J Biochem. 1978 Jan 16;82(2):503–513. [PubMed]
  • Hromockyj AE, Tucker SC, Maurelli AT. Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA (tRNA1(Tyr)). Mol Microbiol. 1992 Aug;6(15):2113–2124. [PubMed]
  • Lett MC, Sasakawa C, Okada N, Sakai T, Makino S, Yamada M, Komatsu K, Yoshikawa M. virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol. 1989 Jan;171(1):353–359. [PMC free article] [PubMed]
  • Makino S, Sasakawa C, Kamata K, Kurata T, Yoshikawa M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell. 1986 Aug 15;46(4):551–555. [PubMed]
  • Maurelli AT, Sansonetti PJ. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2820–2824. [PMC free article] [PubMed]
  • McLennan BD, Buck M, Humphreys J, Griffiths E. Iron-related modification of bacterial transfer RNA. Nucleic Acids Res. 1981 Jun 11;9(11):2629–2640. [PMC free article] [PubMed]
  • Meier F, Suter B, Grosjean H, Keith G, Kubli E. Queuosine modification of the wobble base in tRNAHis influences 'in vivo' decoding properties. EMBO J. 1985 Mar;4(3):823–827. [PMC free article] [PubMed]
  • Ménard R, Sansonetti P, Parsot C, Vasselon T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell. 1994 Nov 4;79(3):515–525. [PubMed]
  • Nakata N, Sasakawa C, Okada N, Tobe T, Fukuda I, Suzuki T, Komatsu K, Yoshikawa M. Identification and characterization of virK, a virulence-associated large plasmid gene essential for intercellular spreading of Shigella flexneri. Mol Microbiol. 1992 Aug;6(16):2387–2395. [PubMed]
  • Nakayama S, Watanabe H. Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol. 1995 Sep;177(17):5062–5069. [PMC free article] [PubMed]
  • Nassif X, Mazert MC, Mounier J, Sansonetti PJ. Evaluation with an iuc::Tn10 mutant of the role of aerobactin production in the virulence of Shigella flexneri. Infect Immun. 1987 Sep;55(9):1963–1969. [PMC free article] [PubMed]
  • Noguchi S, Nishimura Y, Hirota Y, Nishimura S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J Biol Chem. 1982 Jun 10;257(11):6544–6550. [PubMed]
  • Okada N, Sasakawa C, Tobe T, Yamada M, Nagai S, Talukder KA, Komatsu K, Kanegasaki S, Yoshikawa M. Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol Microbiol. 1991 Jan;5(1):187–195. [PubMed]
  • Rosenberg AH, Gefter ML. An iron-dependent modification of several transfer RNA species in Escherichia coli. J Mol Biol. 1969 Dec 28;46(3):581–584. [PubMed]
  • Sakai T, Sasakawa C, Yoshikawa M. Expression of four virulence antigens of Shigella flexneri is positively regulated at the transcriptional level by the 30 kiloDalton virF protein. Mol Microbiol. 1988 Sep;2(5):589–597. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Sansonetti PJ, Ryter A, Clerc P, Maurelli AT, Mounier J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun. 1986 Feb;51(2):461–469. [PMC free article] [PubMed]
  • Sasakawa C, Adler B, Tobe T, Okada N, Nagai S, Komatsu K, Yoshikawa M. Functional organization and nucleotide sequence of virulence Region-2 on the large virulence plasmid in Shigella flexneri 2a. Mol Microbiol. 1989 Sep;3(9):1191–1201. [PubMed]
  • Sasakawa C, Kamata K, Sakai T, Makino S, Yamada M, Okada N, Yoshikawa M. Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J Bacteriol. 1988 Jun;170(6):2480–2484. [PMC free article] [PubMed]
  • Sasakawa C, Kamata K, Sakai T, Murayama SY, Makino S, Yoshikawa M. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun. 1986 Feb;51(2):470–475. [PMC free article] [PubMed]
  • Sasakawa C, Komatsu K, Tobe T, Suzuki T, Yoshikawa M. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J Bacteriol. 1993 Apr;175(8):2334–2346. [PMC free article] [PubMed]
  • Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol. 1991 Mar 20;218(2):365–373. [PubMed]
  • Tobe T, Nagai S, Okada N, Adler B, Yoshikawa M, Sasakawa C. Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol Microbiol. 1991 Apr;5(4):887–893. [PubMed]
  • Tobe T, Yoshikawa M, Mizuno T, Sasakawa C. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol. 1993 Oct;175(19):6142–6149. [PMC free article] [PubMed]
  • Tobe T, Yoshikawa M, Sasakawa C. Thermoregulation of virB transcription in Shigella flexneri by sensing of changes in local DNA superhelicity. J Bacteriol. 1995 Feb;177(4):1094–1097. [PMC free article] [PubMed]
  • Tsui HC, Feng G, Winkler ME. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J Bacteriol. 1996 Oct;178(19):5719–5731. [PMC free article] [PubMed]
  • Venkatesan MM, Buysse JM, Kopecko DJ. Characterization of invasion plasmid antigen genes (ipaBCD) from Shigella flexneri. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9317–9321. [PMC free article] [PubMed]
  • Venkatesan MM, Buysse JM, Oaks EV. Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J Bacteriol. 1992 Mar;174(6):1990–2001. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links