Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1997 Jul; 179(13): 4096–4105.
PMCID: PMC179227

Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis.


Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.

Full Text

The Full Text of this article is available as a PDF (2.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alani E, Cao L, Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. [PMC free article] [PubMed]
  • Au-Young J, Robbins PW. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol. 1990 Feb;4(2):197–207. [PubMed]
  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. [PubMed]
  • Castro C, Ribas JC, Valdivieso MH, Varona R, del Rey F, Duran A. Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae. J Bacteriol. 1995 Oct;177(20):5732–5739. [PMC free article] [PubMed]
  • Chen-Wu JL, Zwicker J, Bowen AR, Robbins PW. Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans. Mol Microbiol. 1992 Feb;6(4):497–502. [PubMed]
  • Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, el-Sherbeini M, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12907–12911. [PMC free article] [PubMed]
  • Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol. 1994 Sep;176(18):5686–5696. [PMC free article] [PubMed]
  • Drgonová J, Drgon T, Tanaka K, Kollár R, Chen GC, Ford RA, Chan CS, Takai Y, Cabib E. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science. 1996 Apr 12;272(5259):277–279. [PubMed]
  • el-Sherbeini M, Clemas JA. Nikkomycin Z supersensitivity of an echinocandin-resistant mutant of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1995 Jan;39(1):200–207. [PMC free article] [PubMed]
  • Eng WK, Faucette L, McLaughlin MM, Cafferkey R, Koltin Y, Morris RA, Young PR, Johnson RK, Livi GP. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene. 1994 Dec 30;151(1-2):61–71. [PubMed]
  • Garrett-Engele P, Moilanen B, Cyert MS. Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H(+)-ATPase. Mol Cell Biol. 1995 Aug;15(8):4103–4114. [PMC free article] [PubMed]
  • Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T. Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem. 1995 Aug 1;231(3):845–854. [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Kang MS, Cabib E. Regulation of fungal cell wall growth: a guanine nucleotide-binding, proteinaceous component required for activity of (1----3)-beta-D-glucan synthase. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5808–5812. [PMC free article] [PubMed]
  • Kasahara S, Yamada H, Mio T, Shiratori Y, Miyamoto C, Yabe T, Nakajima T, Ichishima E, Furuichi Y. Cloning of the Saccharomyces cerevisiae gene whose overexpression overcomes the effects of HM-1 killer toxin, which inhibits beta-glucan synthesis. J Bacteriol. 1994 Mar;176(5):1488–1499. [PMC free article] [PubMed]
  • Kasahara S, Ben Inoue S, Mio T, Yamada T, Nakajima T, Ichishima E, Furuichi Y, Yamada H. Involvement of cell wall beta-glucan in the action of HM-1 killer toxin. FEBS Lett. 1994 Jul 4;348(1):27–32. [PubMed]
  • Kelly R, Register E, Hsu MJ, Kurtz M, Nielsen J. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J Bacteriol. 1996 Aug;178(15):4381–4391. [PMC free article] [PubMed]
  • Kollár R, Petráková E, Ashwell G, Robbins PW, Cabib E. Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan. J Biol Chem. 1995 Jan 20;270(3):1170–1178. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Santos MA, Tuite MF. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 1995 May 11;23(9):1481–1486. [PMC free article] [PubMed]
  • Mazur P, Morin N, Baginsky W, el-Sherbeini M, Clemas JA, Nielsen JB, Foor F. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995 Oct;15(10):5671–5681. [PMC free article] [PubMed]
  • Mio T, Yabe T, Sudoh M, Satoh Y, Nakajima T, Arisawa M, Yamada-Okabe H. Role of three chitin synthase genes in the growth of Candida albicans. J Bacteriol. 1996 Apr;178(8):2416–2419. [PMC free article] [PubMed]
  • Mio T, Yamada-Okabe T, Yabe T, Nakajima T, Arisawa M, Yamada-Okabe H. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. J Bacteriol. 1997 Apr;179(7):2363–2372. [PMC free article] [PubMed]
  • Mol PC, Park HM, Mullins JT, Cabib E. A GTP-binding protein regulates the activity of (1-->3)-beta-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis. J Biol Chem. 1994 Dec 9;269(49):31267–31274. [PubMed]
  • Odds FC. Candida infections: an overview. Crit Rev Microbiol. 1987;15(1):1–5. [PubMed]
  • Orlean PA. (1,3)-beta-D-Glucan synthase from budding and filamentous cultures of the dimorphic fungus Candida albicans. Eur J Biochem. 1982 Oct;127(2):397–403. [PubMed]
  • Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science. 1996 Apr 12;272(5259):279–281. [PubMed]
  • Ram AF, Wolters A, Ten Hoopen R, Klis FM. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast. 1994 Aug;10(8):1019–1030. [PubMed]
  • Ram AF, Brekelmans SS, Oehlen LJ, Klis FM. Identification of two cell cycle regulated genes affecting the beta 1,3-glucan content of cell walls in Saccharomyces cerevisiae. FEBS Lett. 1995 Jan 23;358(2):165–170. [PubMed]
  • Sawistowska-Schröder ET, Kerridge D, Perry H. Echinocandin inhibition of 1,3-beta-D-glucan synthase from Candida albicans. FEBS Lett. 1984 Jul 23;173(1):134–138. [PubMed]
  • Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Durán A, Cabib E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1991 Jul;114(1):111–123. [PMC free article] [PubMed]
  • Shematek EM, Braatz JA, Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3)glucan synthetase. J Biol Chem. 1980 Feb 10;255(3):888–894. [PubMed]
  • Short JM, Fernandez JM, Sorge JA, Huse WD. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. [PMC free article] [PubMed]
  • Sudoh M, Nagahashi S, Doi M, Ohta A, Takagi M, Arisawa M. Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet. 1993 Nov;241(3-4):351–358. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • Conserved Domains
    Conserved Domains
    Link to related CDD entry
  • MedGen
    Related information in MedGen
  • Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Published protein sequences
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...