• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Apr 1997; 179(8): 2512–2518.
PMCID: PMC178997

Active efflux of bile salts by Escherichia coli.


Enteric bacteria such as Escherichia coli must tolerate high levels of bile salts, powerful detergents that disrupt biological membranes. The outer membrane barrier of gram-negative bacteria plays an important role in this resistance, but ultimately it can only retard the influx of bile salts. We therefore examined whether E. coli possessed an energy-dependent efflux mechanism for these compounds. Intact cells of E. coli K-12 appeared to pump out chenodeoxycholate, since its intracellular accumulation increased more than twofold upon deenergization of the cytoplasmic membrane by a proton conductor. Growth inhibition by bile salts and accumulation levels of chenodeoxycholate increased when mutations inactivating the acrAB and emrAB gene clusters were introduced. The AcrAB system especially appeared to play a significant role in bile acid efflux. However, another efflux system(s) also plays an important role, since the accumulation level of chenodeoxycholate increased strongly upon deenergization of acrA emrB double mutant cells. Everted membrane vesicles accumulated taurocholate in an energy-dependent manner, apparently consuming delta pH without affecting delta psi. The efflux thus appears to be catalyzed by a proton antiporter. Accumulation by the everted membrane vesicles was not decreased by mutations in acr and emrB genes and presumably reflects activity of the unknown system seen in intact cells. It followed saturation kinetics with Vmax and Km values in the neighborhood of 0.3 nmol min(-1) mg of protein(-1) and 50 microM, respectively.

Full Text

The Full Text of this article is available as a PDF (187K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • ALBERT A, REES CW. Avidity of the tetracyclines for the cations of metals. Nature. 1956 Mar 3;177(4505):433–434. [PubMed]
  • Chai TJ, Foulds J. Two bacteriophages which utilize a new Escherichia coli major outer membrane protein as part of their receptor. J Bacteriol. 1978 Jul;135(1):164–170. [PMC free article] [PubMed]
  • Colowick SP, Womack FC. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem. 1969 Feb 25;244(4):774–777. [PubMed]
  • Cooper CE, Bruce D, Nicholls P. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Biochemistry. 1990 Apr 24;29(16):3859–3865. [PubMed]
  • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. [PubMed]
  • Franklund CV, Baron SF, Hylemon PB. Characterization of the baiH gene encoding a bile acid-inducible NADH:flavin oxidoreductase from Eubacterium sp. strain VPI 12708. J Bacteriol. 1993 May;175(10):3002–3012. [PMC free article] [PubMed]
  • Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol. 1995 Apr;16(1):45–55. [PubMed]
  • Mallonee DH, Hylemon PB. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol. 1996 Dec;178(24):7053–7058. [PMC free article] [PubMed]
  • McMurry L, Petrucci RE, Jr, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3974–3977. [PMC free article] [PubMed]
  • Mühlradt PF, Menzel J, Golecki JR, Speth V. Lateral mobility and surface density of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Eur J Biochem. 1974 Apr 16;43(3):533–539. [PubMed]
  • Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996 Oct;178(20):5853–5859. [PMC free article] [PubMed]
  • Nikaido H, Rosenberg EY. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol. 1983 Jan;153(1):241–252. [PMC free article] [PubMed]
  • Nikaido H, Saier MH., Jr Transport proteins in bacteria: common themes in their design. Science. 1992 Nov 6;258(5084):936–942. [PubMed]
  • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. [PMC free article] [PubMed]
  • Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol. 1996 Jan;178(1):306–308. [PMC free article] [PubMed]
  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol. 1995 Mar;15(5):795–802. [PubMed]
  • Perlin DS, Kasamo K, Brooker RJ, Slayman CW. Electrogenic H+ translocation by the plasma membrane ATPase of Neurospora. Studies on plasma membrane vesicles and reconstituted enzyme. J Biol Chem. 1984 Jun 25;259(12):7884–7892. [PubMed]
  • Perlin DS, San Francisco MJ, Slayman CW, Rosen BP. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch Biochem Biophys. 1986 Jul;248(1):53–61. [PubMed]
  • Plésiat P, Nikaido H. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol. 1992 May;6(10):1323–1333. [PubMed]
  • Reenstra WW, Patel L, Rottenberg H, Kaback HR. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli. Biochemistry. 1980 Jan 8;19(1):1–9. [PubMed]
  • Schnaitman CA, McDonald GA. Regulation of outer membrane protein synthesis in Escherichia coli K-12: deletion of ompC affects expression of the OmpF protein. J Bacteriol. 1984 Aug;159(2):555–563. [PMC free article] [PubMed]
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. [PubMed]
  • Thanassi DG, Suh GS, Nikaido H. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J Bacteriol. 1995 Feb;177(4):998–1007. [PMC free article] [PubMed]
  • Wilmes-Riesenberg MR, Wanner BL. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol. 1992 Jul;174(14):4558–4575. [PMC free article] [PubMed]
  • Yamaguchi A, Iwasaki-Ohba Y, Ono N, Kaneko-Ohdera M, Sawai T. Stoichiometry of metal-tetracycline/H+ antiport mediated by transposon Tn10-encoded tetracycline resistance protein in Escherichia coli. FEBS Lett. 1991 May 6;282(2):415–418. [PubMed]
  • Yamaguchi A, Udagawa T, Sawai T. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J Biol Chem. 1990 Mar 25;265(9):4809–4813. [PubMed]
  • Yoshimoto T, Higashi H, Kanatani A, Lin XS, Nagai H, Oyama H, Kurazono K, Tsuru D. Cloning and sequencing of the 7 alpha-hydroxysteroid dehydrogenase gene from Escherichia coli HB101 and characterization of the expressed enzyme. J Bacteriol. 1991 Apr;173(7):2173–2179. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...