• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Feb 1997; 179(4): 1344–1353.
PMCID: PMC178835

The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization.

Abstract

A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation.

Full Text

The Full Text of this article is available as a PDF (3.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anemüller S, Schäfer G. Cytochrome aa3 from Sulfolobus acidocaldarius. A single-subunit, quinol-oxidizing archaebacterial terminal oxidase. Eur J Biochem. 1990 Jul 31;191(2):297–305. [PubMed]
  • Brown S, Moody AJ, Mitchell R, Rich PR. Binuclear centre structure of terminal protonmotive oxidases. FEBS Lett. 1993 Feb 1;316(3):216–223. [PubMed]
  • Burland V, Plunkett G, 3rd, Sofia HJ, Daniels DL, Blattner FR. Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105–2119. [PMC free article] [PubMed]
  • Calhoun MW, Thomas JW, Gennis RB. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. [PubMed]
  • Calhoun MW, Thomas JW, Hill JJ, Hosler JP, Shapleigh JP, Tecklenburg MM, Ferguson-Miller S, Babcock GT, Alben JO, Gennis RB. Identity of the axial ligand of the high-spin heme in cytochrome oxidase: spectroscopic characterization of mutants in the bo-type oxidase of Escherichia coli and the aa3-type oxidase of Rhodobacter sphaeroides. Biochemistry. 1993 Oct 12;32(40):10905–10911. [PubMed]
  • Castresana J, Lübben M, Saraste M. New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol. 1995 Jul 7;250(2):202–210. [PubMed]
  • Castresana J, Lübben M, Saraste M, Higgins DG. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 1994 Jun 1;13(11):2516–2525. [PMC free article] [PubMed]
  • Castresana J, Saraste M. Evolution of energetic metabolism: the respiration-early hypothesis. Trends Biochem Sci. 1995 Nov;20(11):443–448. [PubMed]
  • Chepuri V, Lemieux L, Au DC, Gennis RB. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185–11192. [PubMed]
  • Chomczynski P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem. 1992 Feb 14;201(1):134–139. [PubMed]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [PubMed]
  • Denda K, Fujiwara T, Seki M, Yoshida M, Fukumori Y, Yamanaka T. Molecular cloning of the cytochrome aa3 gene from the archaeon (Archaebacterium) Halobacterium halobium. Biochem Biophys Res Commun. 1991 Nov 27;181(1):316–322. [PubMed]
  • Deppenmeier U, Blaut M, Lentes S, Herzberg C, Gottschalk G. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur J Biochem. 1995 Jan 15;227(1-2):261–269. [PubMed]
  • Fetter JR, Qian J, Shapleigh J, Thomas JW, García-Horsman A, Schmidt E, Hosler J, Babcock GT, Gennis RB, Ferguson-Miller S. Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1604–1608. [PMC free article] [PubMed]
  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. [PubMed]
  • Garcia-Horsman JA, Puustinen A, Gennis RB, Wikström M. Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: second-site mutations in subunit I that restore proton pumping in the mutant Asp135-->Asn. Biochemistry. 1995 Apr 4;34(13):4428–4433. [PubMed]
  • Gennis RB. Site-directed mutagenesis studies on subunit I of the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides: a brief review of progress to date. Biochim Biophys Acta. 1992 Jul 17;1101(2):184–187. [PubMed]
  • Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990 Nov 30;96(1):23–28. [PubMed]
  • Iwata S, Ostermeier C, Ludwig B, Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. [PubMed]
  • Kletzin A. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol. 1989 Mar;171(3):1638–1643. [PMC free article] [PubMed]
  • Kletzin A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. J Bacteriol. 1992 Sep;174(18):5854–5859. [PMC free article] [PubMed]
  • Kroczek RA, Siebert E. Optimization of northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation. Anal Biochem. 1990 Jan;184(1):90–95. [PubMed]
  • Leffers H, Gropp F, Lottspeich F, Zillig W, Garrett RA. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. J Mol Biol. 1989 Mar 5;206(1):1–17. [PubMed]
  • Lübben M, Arnaud S, Castresana J, Warne A, Albracht SP, Saraste M. A second terminal oxidase in Sulfolobus acidocaldarius. Eur J Biochem. 1994 Aug 15;224(1):151–159. [PubMed]
  • Lübben M, Kolmerer B, Saraste M. An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J. 1992 Mar;11(3):805–812. [PMC free article] [PubMed]
  • Lübben M, Warne A, Albracht SP, Saraste M. The purified SoxABCD quinol oxidase complex of Sulfolobus acidocaldarius contains a novel haem. Mol Microbiol. 1994 Jul;13(2):327–335. [PubMed]
  • Meunier B, Madgwick SA, Reil E, Oettmeier W, Rich PR. New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry. 1995 Jan 24;34(3):1076–1083. [PubMed]
  • Mitchell DM, Fetter JR, Mills DA, Adelroth P, Pressler MA, Kim Y, Aasa R, Brzezinski P, Malmström BG, Alben JO, et al. Site-directed mutagenesis of residues lining a putative proton transfer pathway in cytochrome c oxidase from Rhodobacter sphaeroides. Biochemistry. 1996 Oct 8;35(40):13089–13093. [PubMed]
  • Musser SM, Stowell MH, Chan SI. Comparison of ubiquinol and cytochrome c terminal oxidases. An alternative view. FEBS Lett. 1993 Jul 26;327(2):131–136. [PubMed]
  • Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR. Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol. 1985;22(4):301–307. [PubMed]
  • Prochaska LJ, Bisson R, Capaldi RA, Steffens GC, Buse G. Inhibition of cytochrome c oxidase function by dicyclohexylcarbodiimide. Biochim Biophys Acta. 1981 Sep 14;637(2):360–373. [PubMed]
  • Purschke WG, Schäfer G. An alternative to digoxigenin-labeled primers for manual nonradioactive sequencing allows reading of more than 700 bases. Anal Biochem. 1996 Jun 15;238(1):98–100. [PubMed]
  • Reiter WD, Palm P, Zillig W. Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res. 1988 Mar 25;16(6):2445–2459. [PMC free article] [PubMed]
  • Reiter WD, Hüdepohl U, Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9509–9513. [PMC free article] [PubMed]
  • Riistama S, Puustinen A, García-Horsman A, Iwata S, Michel H, Wikström M. Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):1–4. [PubMed]
  • Rost B, Casadio R, Fariselli P, Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. [PMC free article] [PubMed]
  • Rost B, Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. [PubMed]
  • Saraste M, Holm L, Lemieux L, Lübben M, van der Oost J. The happy family of cytochrome oxidases. Biochem Soc Trans. 1991 Aug;19(3):608–612. [PubMed]
  • Saraste M, Metso T, Nakari T, Jalli T, Lauraeus M, Van der Oost J. The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. Eur J Biochem. 1991 Jan 30;195(2):517–525. [PubMed]
  • Schäfer G, Purschke WG, Gleissner M, Schmidt CL. Respiratory chains of archaea and extremophiles. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):16–20. [PubMed]
  • Schäfer G, Purschke W, Schmidt CL. On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev. 1996 May;18(2-3):173–188. [PubMed]
  • Steinrücke P, Ludwig B. Genetics of Paracoccus denitrificans. FEMS Microbiol Rev. 1993 Jan;10(1-2):83–117. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Tsubaki M, Mogi T, Hori H, Hirota S, Ogura T, Kitagawa T, Anraku Y. Molecular structure of redox metal centers of the cytochrome bo complex from Escherichia coli. Spectroscopic characterizations of the subunit I histidine mutant oxidases. J Biol Chem. 1994 Dec 9;269(49):30861–30868. [PubMed]
  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. [PubMed]
  • van der Oost J, de Boer AP, de Gier JW, Zumft WG, Stouthamer AH, van Spanning RJ. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett. 1994 Aug 1;121(1):1–9. [PubMed]
  • von Wachenfeldt C, de Vries S, van der Oost J. The CuAsite of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. FEBS Lett. 1994 Feb 28;340(1-2):109–113. [PubMed]
  • Watters C. A one-step biuret assay for protein in the presence of detergent. Anal Biochem. 1978 Aug 1;88(2):695–698. [PubMed]
  • Wilmanns M, Lappalainen P, Kelly M, Sauer-Eriksson E, Saraste M. Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11955–11959. [PMC free article] [PubMed]
  • Zillig W, Yeats S, Holz I, Böck A, Gropp F, Rettenberger M, Lutz S. Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature. 313(6005):789–791. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links