• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Feb 1997; 179(4): 1203–1210.
PMCID: PMC178817

VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1.

Abstract

During genetic transformation of plant cells by Agrobacterium tumefaciens, 11 VirB proteins and VirD4 are proposed to form a transmembrane bridge to transfer a DNA-protein complex (T-complex) into the plant cytoplasm. In this study, the localization of the first product of the virB operon, VirB1, was studied in detail. While full-length VirB1 localized mostly to the inner membrane, an immunoreactive VirB1 product was found as soluble processed form, designated VirB1*. Equal amounts of VirB1* could be detected in concentrated culture supernatants versus associated with the cell. VirB1* was purified from the supernatant of vir-induced cells by ammonium sulfate precipitation and Q-Sepharose chromatography. Sequence analysis of the N terminus of VirB1* localized the processing site after amino acid 172 of VirB1. Cell-associated VirB1* was partly removed by vortexing, suggesting a loose association with the cell or active secretion. However, cross-linking and coimmunoprecipitation showed a close association of cell-bound VirB1* with the VirB9-VirB7 heterodimer, a membrane-associated component of the T-complex transfer machinery. Homologies of the N-terminal part of VirB1 to bacterial transglycosylases suggest that it may assist T-complex transfer by local lysis of the bacterial cell wall, whereas the exposed localization of the C-terminal processing product VirB1* predicts direct interaction with the plant. Thus, VirB1 may be a bifunctional protein where both parts have different functions in T-complex transfer from Agrobacterium to plant cells.

Full Text

The Full Text of this article is available as a PDF (808K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Allaoui A, Ménard R, Sansonetti PJ, Parsot C. Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun. 1993 May;61(5):1707–1714. [PMC free article] [PubMed]
  • Anderson LB, Hertzel AV, Das A. Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8889–8894. [PMC free article] [PubMed]
  • Barinaga M. A shared strategy for virulence. Science. 1996 May 31;272(5266):1261–1263. [PubMed]
  • Baron C, Thorstenson YR, Zambryski PC. The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol. 1997 Feb;179(4):1211–1218. [PMC free article] [PubMed]
  • Baron C, Zambryski PC. Plant transformation: a pilus in Agrobacterium T-DNA transfer. Curr Biol. 1996 Dec 1;6(12):1567–1569. [PubMed]
  • Bayer M, Eferl R, Zellnig G, Teferle K, Dijkstra A, Koraimann G, Högenauer G. Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol. 1995 Aug;177(15):4279–4288. [PMC free article] [PubMed]
  • Beijersbergen A, Smith SJ, Hooykaas PJ. Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid. 1994 Sep;32(2):212–218. [PubMed]
  • Berger BR, Christie PJ. The Agrobacterium tumefaciens virB4 gene product is an essential virulence protein requiring an intact nucleoside triphosphate-binding domain. J Bacteriol. 1993 Mar;175(6):1723–1734. [PMC free article] [PubMed]
  • Berger BR, Christie PJ. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol. 1994 Jun;176(12):3646–3660. [PMC free article] [PubMed]
  • Binns AN, Beaupré CE, Dale EM. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J Bacteriol. 1995 Sep;177(17):4890–4899. [PMC free article] [PubMed]
  • Christie PJ, Ward JE, Jr, Gordon MP, Nester EW. A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9677–9681. [PMC free article] [PubMed]
  • Christie PJ, Ward JE, Winans SC, Nester EW. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol. 1988 Jun;170(6):2659–2667. [PMC free article] [PubMed]
  • Citovsky V, Wong ML, Zambryski P. Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1193–1197. [PMC free article] [PubMed]
  • Dijkstra AJ, Keck W. Peptidoglycan as a barrier to transenvelope transport. J Bacteriol. 1996 Oct;178(19):5555–5562. [PMC free article] [PubMed]
  • Dijkstra BW, Thunnissen AM. 'Holy' proteins. II: The soluble lytic transglycosylase. Curr Opin Struct Biol. 1994 Dec;4(6):810–813. [PubMed]
  • Dürrenberger MB, Villiger W, Bächi T. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol. 1991 Oct;107(2):146–156. [PubMed]
  • Ehlert K, Höltje JV, Templin MF. Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli. Mol Microbiol. 1995 May;16(4):761–768. [PubMed]
  • Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ. The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol. 1996 Jun;178(11):3156–3167. [PMC free article] [PubMed]
  • Fernandez D, Spudich GM, Zhou XR, Christie PJ. The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol. 1996 Jun;178(11):3168–3176. [PMC free article] [PubMed]
  • Finberg KE, Muth TR, Young SP, Maken JB, Heitritter SM, Binns AN, Banta LM. Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. J Bacteriol. 1995 Sep;177(17):4881–4889. [PMC free article] [PubMed]
  • Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev. 1994 Jun;58(2):162–210. [PMC free article] [PubMed]
  • Fullner KJ, Stephens KM, Nester EW. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA. Mol Gen Genet. 1994 Dec 15;245(6):704–715. [PubMed]
  • Fullner KJ, Lara JC, Nester EW. Pilus assembly by Agrobacterium T-DNA transfer genes. Science. 1996 Aug 23;273(5278):1107–1109. [PubMed]
  • Gopalan S, Bauer DW, Alfano JR, Loniello AO, He SY, Collmer A. Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell. 1996 Jul;8(7):1095–1105. [PMC free article] [PubMed]
  • Hobbs M, Mattick JS. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol. 1993 Oct;10(2):233–243. [PubMed]
  • Höltje JV. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol. 1995 Oct;164(4):243–254. [PubMed]
  • Jacob-Dubuisson F, Buisine C, Mielcarek N, Clément E, Menozzi FD, Locht C. Amino-terminal maturation of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol. 1996 Jan;19(1):65–78. [PubMed]
  • Jones AL, Lai EM, Shirasu K, Kado CI. VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. J Bacteriol. 1996 Oct;178(19):5706–5711. [PMC free article] [PubMed]
  • Jones AL, Shirasu K, Kado CI. The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol. 1994 Sep;176(17):5255–5261. [PMC free article] [PubMed]
  • Kado CI. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis. Mol Microbiol. 1994 Apr;12(1):17–22. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lessl M, Lanka E. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell. 1994 May 6;77(3):321–324. [PubMed]
  • McIver KS, Kessler E, Olson JC, Ohman DE. The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol. 1995 Dec;18(5):877–889. [PubMed]
  • Mushegian AR, Fullner KJ, Koonin EV, Nester EW. A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7321–7326. [PMC free article] [PubMed]
  • Noelken ME, Wisdom BJ, Jr, Hudson BG. Estimation of the size of collagenous polypeptides by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Anal Biochem. 1981 Jan 1;110(1):131–136. [PubMed]
  • O'Farrell PZ, Goodman HM, O'Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. [PubMed]
  • Okamoto S, Toyoda-Yamamoto A, Ito K, Takebe I, Machida Y. Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol Gen Genet. 1991 Aug;228(1-2):24–32. [PubMed]
  • Osborn MJ, Gander JE, Parisi E, Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed]
  • Pohlman RF, Genetti HD, Winans SC. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol Microbiol. 1994 Nov;14(4):655–668. [PubMed]
  • Pohlner J, Halter R, Beyreuther K, Meyer TF. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature. 325(6103):458–462. [PubMed]
  • Pohlner J, Langenberg U, Wölk U, Beck SC, Meyer TF. Uptake and nuclear transport of Neisseria IgA1 protease-associated alpha-proteins in human cells. Mol Microbiol. 1995 Sep;17(6):1073–1083. [PubMed]
  • Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. [PMC free article] [PubMed]
  • Pugsley AP. Multimers of the precursor of a type IV pilin-like component of the general secretory pathway are unrelated to pili. Mol Microbiol. 1996 Jun;20(6):1235–1245. [PubMed]
  • Pugsley AP, Possot O. The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol Microbiol. 1993 Nov;10(3):665–674. [PubMed]
  • Renauld-Mongénie G, Cornette J, Mielcarek N, Menozzi FD, Locht C. Distinct roles of the N-terminal and C-terminal precursor domains in the biogenesis of the Bordetella pertussis filamentous hemagglutinin. J Bacteriol. 1996 Feb;178(4):1053–1060. [PMC free article] [PubMed]
  • Rosqvist R, Magnusson KE, Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994 Feb 15;13(4):964–972. [PMC free article] [PubMed]
  • Salmond GP, Reeves PJ. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7–12. [PubMed]
  • Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. [PubMed]
  • Shirasu K, Kado CI. Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):287–294. [PubMed]
  • Shirasu K, Koukolíková-Nicola Z, Hohn B, Kado CI. An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes. Mol Microbiol. 1994 Feb;11(3):581–588. [PubMed]
  • Sory MP, Boland A, Lambermont I, Cornelis GR. Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):11998–12002. [PMC free article] [PubMed]
  • Spudich GM, Fernandez D, Zhou XR, Christie PJ. Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7512–7517. [PMC free article] [PubMed]
  • Stone KD, Zhang HZ, Carlson LK, Donnenberg MS. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for the biogenesis of a type IV pilus. Mol Microbiol. 1996 Apr;20(2):325–337. [PubMed]
  • Sundberg C, Meek L, Carroll K, Das A, Ream W. VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol. 1996 Feb;178(4):1207–1212. [PMC free article] [PubMed]
  • Templin MF, Edwards DH, Höltje JV. A murein hydrolase is the specific target of bulgecin in Escherichia coli. J Biol Chem. 1992 Oct 5;267(28):20039–20043. [PubMed]
  • Thorstenson YR, Kuldau GA, Zambryski PC. Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol. 1993 Aug;175(16):5233–5241. [PMC free article] [PubMed]
  • Thorstenson YR, Zambryski PC. The essential virulence protein VirB8 localizes to the inner membrane of Agrobacterium tumefaciens. J Bacteriol. 1994 Mar;176(6):1711–1717. [PMC free article] [PubMed]
  • Tummuru MK, Sharma SA, Blaser MJ. Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol Microbiol. 1995 Dec;18(5):867–876. [PubMed]
  • Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. [PubMed]
  • Weiss AA, Johnson FD, Burns DL. Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2970–2974. [PMC free article] [PubMed]
  • Winans SC, Burns DL, Christie PJ. Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. Trends Microbiol. 1996 Feb;4(2):64–68. [PubMed]
  • Zambryski P, Joos H, Genetello C, Leemans J, Montagu MV, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 1983;2(12):2143–2150. [PMC free article] [PubMed]
  • Zupan JR, Citovsky V, Zambryski P. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2392–2397. [PMC free article] [PubMed]
  • Zupan JR, Zambryski P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 1995 Apr;107(4):1041–1047. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...