• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Feb 1997; 179(4): 1068–1076.
PMCID: PMC178799

AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae.

Abstract

Autophagocytosis is a starvation-induced process responsible for transport of cytoplasmic proteins to the vacuole. In Saccharomyces cerevisiae, autophagy is characterized by the phenotypic appearance of autophagic vesicles inside the vacuole of strains deficient in proteinase yscB. The AUT1 gene, essential for autophagy, was isolated by complementation of the sporulation deficiency of a diploid aut1-1 mutant strain by a yeast genomic library and characterized. AUT1 is located on the right arm of chromosome XIV, 10 kb from the centromere, and encodes a protein of 310 amino acids, with an estimated molecular weight of 36 kDa. Cells carrying a chromosomal deletion of AUT1 are defective in the starvation-induced bulk flow transport of cytoplasmic proteins to the vacuole. aut1 null mutant strains are completely viable but show decreased survival rates during starvation. Homozygous delta aut1 diploid cells fail to sporulate. The selective cytoplasm-to-vacuole transport of aminopeptidase I is blocked in logarithmically growing and in starved delta autl cells. Deletion of the AUT1 gene had no obvious influence on secretion, fluid phase endocytosis, or vacuolar protein sorting. This supports the idea of autophagocytosis as being a novel route transporting proteins from the cytoplasm to the vacuole.

Full Text

The Full Text of this article is available as a PDF (750K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baba M, Takeshige K, Baba N, Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol. 1994 Mar;124(6):903–913. [PMC free article] [PubMed]
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. [PubMed]
  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. [PubMed]
  • Conibear E, Stevens TH. Vacuolar biogenesis in yeast: sorting out the sorting proteins. Cell. 1995 Nov 17;83(4):513–516. [PubMed]
  • Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990 Aug;15(8):305–309. [PubMed]
  • Dulic V, Egerton M, Elguindi I, Raths S, Singer B, Riezman H. Yeast endocytosis assays. Methods Enzymol. 1991;194:697–710. [PubMed]
  • Dunn WA., Jr Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 1994 Apr;4(4):139–143. [PubMed]
  • Dunn WA., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. [PMC free article] [PubMed]
  • Dunn WA., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935–1945. [PMC free article] [PubMed]
  • Egner R, Thumm M, Straub M, Simeon A, Schüller HJ, Wolf DH. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 25;268(36):27269–27276. [PubMed]
  • Finger A, Knop M, Wolf DH. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem. 1993 Dec 1;218(2):565–574. [PubMed]
  • Furuno K, Ishikawa T, Akasaki K, Lee S, Nishimura Y, Tsuji H, Himeno M, Kato K. Immunocytochemical study of the surrounding envelope of autophagic vacuoles in cultured rat hepatocytes. Exp Cell Res. 1990 Aug;189(2):261–268. [PubMed]
  • Gordon PB, Høyvik H, Seglen PO. Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J. 1992 Apr 15;283(Pt 2):361–369. [PMC free article] [PubMed]
  • Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem. 1996 Jul 26;271(30):17621–17624. [PubMed]
  • Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol. 1995 Nov;131(3):591–602. [PMC free article] [PubMed]
  • Hilt W, Wolf DH. Proteasomes: destruction as a programme. Trends Biochem Sci. 1996 Mar;21(3):96–102. [PubMed]
  • Hilt W, Wolf DH. Stress-induced proteolysis in yeast. Mol Microbiol. 1992 Sep;6(17):2437–2442. [PubMed]
  • Jones EW. Three proteolytic systems in the yeast saccharomyces cerevisiae. J Biol Chem. 1991 May 5;266(13):7963–7966. [PubMed]
  • Klionsky DJ, Cueva R, Yaver DS. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol. 1992 Oct;119(2):287–299. [PMC free article] [PubMed]
  • Knop M, Schiffer HH, Rupp S, Wolf DH. Vacuolar/lysosomal proteolysis: proteases, substrates, mechanisms. Curr Opin Cell Biol. 1993 Dec;5(6):990–996. [PubMed]
  • Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990 Sep;111(3):941–953. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lawrence BP, Brown WJ. Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes. J Cell Sci. 1992 Jul;102(Pt 3):515–526. [PubMed]
  • Mechler B, Müller M, Müller H, Meussdoerffer F, Wolf DH. In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae. J Biol Chem. 1982 Oct 10;257(19):11203–11206. [PubMed]
  • Rabouille C, Strous GJ, Crapo JD, Geuze HJ, Slot JW. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol. 1993 Feb;120(4):897–908. [PMC free article] [PubMed]
  • Raths S, Rohrer J, Crausaz F, Riezman H. end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae. J Cell Biol. 1993 Jan;120(1):55–65. [PMC free article] [PubMed]
  • Realini C, Rogers SW, Rechsteiner M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 1994 Jul 11;348(2):109–113. [PubMed]
  • Riezman H. Yeast endocytosis. Trends Cell Biol. 1993 Aug;3(8):273–277. [PubMed]
  • Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH. Methods for studying the yeast vacuole. Methods Enzymol. 1991;194:644–661. [PubMed]
  • Schekman R. Genetic and biochemical analysis of vesicular traffic in yeast. Curr Opin Cell Biol. 1992 Aug;4(4):587–592. [PubMed]
  • Schekman R, Esmon B, Ferro-Novick S, Field C, Novick P. Yeast secretory mutants: isolation and characterization. Methods Enzymol. 1983;96:802–815. [PubMed]
  • Schekman R, Orci L. Coat proteins and vesicle budding. Science. 1996 Mar 15;271(5255):1526–1533. [PubMed]
  • Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia. 1992 Feb 15;48(2):158–172. [PubMed]
  • Sherman F, Wakem P. Mapping yeast genes. Methods Enzymol. 1991;194:38–57. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Simeon A, van der Klei IJ, Veenhuis M, Wolf DH. Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole. FEBS Lett. 1992 Apr 20;301(2):231–235. [PubMed]
  • Stack JH, Horazdovsky B, Emr SD. Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. Annu Rev Cell Dev Biol. 1995;11:1–33. [PubMed]
  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. [PMC free article] [PubMed]
  • Teichert U, Mechler B, Müller H, Wolf DH. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem. 1989 Sep 25;264(27):16037–16045. [PubMed]
  • Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994 Aug 1;349(2):275–280. [PubMed]
  • Tooze J, Hollinshead M, Ludwig T, Howell K, Hoflack B, Kern H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol. 1990 Aug;111(2):329–345. [PMC free article] [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1-2):169–174. [PubMed]
  • Ueno T, Muno D, Kominami E. Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem. 1991 Oct 5;266(28):18995–18999. [PubMed]
  • Van Den Hazel HB, Kielland-Brandt MC, Winther JR. Review: biosynthesis and function of yeast vacuolar proteases. Yeast. 1996 Jan;12(1):1–16. [PubMed]
  • Verhasselt P, Aert R, Voet M, Volckaert G. Twelve open reading frames revealed in the 23.6 kb segment flanking the centromere on the Saccharomyces cerevisiae chromosome XIV right arm. Yeast. 1994 Oct;10(10):1355–1361. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...