• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1996; 178(24): 7241–7247.
PMCID: PMC178639

Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.

Abstract

In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are no longer capable of growth by fumarate respiration. DcuC, however, is not required for C4-dicarboxylate uptake in aerobic growth. The dcuC gene encodes a putative protein of 461 amino acid residues with properties typical for secondary procaryotic carriers. DcuC shows sequence similarity to the two major anaerobic C4-dicarboxylate carriers DcuA and DcuB. Mutants producing only DcuA, DcuB, or DcuC were prepared. In the mutants, DcuA, DcuB, and DcuC were each able to operate in the exchange and uptake mode.

Full Text

The Full Text of this article is available as a PDF (311K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alting-Mees MA, Short JM. pBluescript II: gene mapping vectors. Nucleic Acids Res. 1989 Nov 25;17(22):9494–9494. [PMC free article] [PubMed]
  • Chen WP, Kuo TT. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 1993 May 11;21(9):2260–2260. [PMC free article] [PubMed]
  • Engel P, Krämer R, Unden G. Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system. J Bacteriol. 1992 Sep;174(17):5533–5539. [PMC free article] [PubMed]
  • Engel P, Krämer R, Unden G. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux. Eur J Biochem. 1994 Jun 1;222(2):605–614. [PubMed]
  • Engelke T, Jording D, Kapp D, Pühler A. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J Bacteriol. 1989 Oct;171(10):5551–5560. [PMC free article] [PubMed]
  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. [PubMed]
  • Fujita N, Mori H, Yura T, Ishihama A. Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637–1639. [PMC free article] [PubMed]
  • Gutowski SJ, Rosenberg H. Succinate uptake and related proton movements in Escherichia coli K12. Biochem J. 1975 Dec;152(3):647–654. [PMC free article] [PubMed]
  • Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. [PubMed]
  • Kay WW, Kornberg HL. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur J Biochem. 1971 Jan;18(2):274–281. [PubMed]
  • Kleckner N, Bender J, Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. [PubMed]
  • Kohara Y, Akiyama K, Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. [PubMed]
  • Lambden PR, Guest JR. Mutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol. 1976 Dec;97(2):145–160. [PubMed]
  • Lo TC. The molecular mechanism of dicarboxylic acid transport in Escherichia coli K 12. J Supramol Struct. 1977;7(3-4):463–480. [PubMed]
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. [PubMed]
  • Six S, Andrews SC, Unden G, Guest JR. Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol. 1994 Nov;176(21):6470–6478. [PMC free article] [PubMed]
  • Sofia HJ, Burland V, Daniels DL, Plunkett G, 3rd, Blattner FR. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576–2586. [PMC free article] [PubMed]
  • Tatusov RL, Mushegian AR, Bork P, Brown NP, Hayes WS, Borodovsky M, Rudd KE, Koonin EV. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol. 1996 Mar 1;6(3):279–291. [PubMed]
  • Unden G, Becker S, Bongaerts J, Schirawski J, Six S. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek. 1994;66(1-3):3–22. [PubMed]
  • Van der Rest ME, Abee T, Molenaar D, Konings WN. Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae. Eur J Biochem. 1991 Jan 1;195(1):71–77. [PubMed]
  • Wallace BJ, Young IG. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta. 1977 Jul 7;461(1):84–100. [PubMed]
  • Wright JK, Seckler R, Overath P. Molecular aspects of sugar:ion cotransport. Annu Rev Biochem. 1986;55:225–248. [PubMed]
  • Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...