• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1996; 178(23): 7016–7019.
PMCID: PMC178609

cobB function is required for catabolism of propionate in Salmonella typhimurium LT2: evidence for existence of a substitute function for CobB within the 1,2-propanediol utilization (pdu) operon.

Abstract

The cobB function of Salmonella typhimurium LT2 was defined in vivo as an alternative activity for the nicotinic acid mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme (CobT), which is involved in the assembly of the nucleotide loop of cobalamin in this bacterium (J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante-Semerena, J. Bacteriol. 176:3568-3575, 1994). In this paper we document that, independent of their inability to substitute for CobT function, cobB mutants are unable to use propionate as a carbon and energy source. A plasmid carrying only a wild-type copy of cobB complemented the cobalamin biosynthesis and propionate catabolism phenotypes of cobB mutants, indicating that a lack of CobB was responsible for both phenotypes. We demonstrate the existence of a function encoded by the 1,2-propanediol utilization (pdu) operon, which when induced by 1,2-propanediol compensated for the lack of CobB during propionate catabolism but failed to compensate for CobT in the assembly of the nucleotide loop of cobalamin in a cobB cobT double mutant.

Full Text

The Full Text of this article is available as a PDF (193K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bobik TA, Ailion M, Roth JR. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol. 1992 Apr;174(7):2253–2266. [PMC free article] [PubMed]
  • Chan RK, Botstein D, Watanabe T, Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. [PubMed]
  • Chen P, Andersson DI, Roth JR. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5474–5482. [PMC free article] [PubMed]
  • Escalante-Semerena JC, Roth JR. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2251–2258. [PMC free article] [PubMed]
  • Escalante-Semerena JC, Suh SJ, Roth JR. cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J Bacteriol. 1990 Jan;172(1):273–280. [PMC free article] [PubMed]
  • Grabau C, Roth JR. A Salmonella typhimurium cobalamin-deficient mutant blocked in 1-amino-2-propanol synthesis. J Bacteriol. 1992 Apr;174(7):2138–2144. [PMC free article] [PubMed]
  • Hong JS, Ames BN. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3158–3162. [PMC free article] [PubMed]
  • Jeter RM. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol. 1990 May;136(5):887–896. [PubMed]
  • Jeter RM, Olivera BM, Roth JR. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. [PMC free article] [PubMed]
  • Martinez E, Bartolomé B, de la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene. 1988 Aug 15;68(1):159–162. [PubMed]
  • O'Toole GA, Trzebiatowski JR, Escalante-Semerena JC. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem. 1994 Oct 21;269(42):26503–26511. [PubMed]
  • Rondon MR, Escalante-Semerena JC. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol. 1992 Apr;174(7):2267–2272. [PMC free article] [PubMed]
  • Rondon MR, Escalante-Semerena JC. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2. J Bacteriol. 1996 Apr;178(8):2196–2203. [PMC free article] [PubMed]
  • Schmieger H. A method for detection of phage mutants with altered transducing ability. Mol Gen Genet. 1971;110(4):378–381. [PubMed]
  • Schmieger H, Backhaus H. The origin of DNA in transducing particles in P22-mutants with increased transduction-frequencies (HT-mutants). Mol Gen Genet. 1973 Jan 24;120(2):181–190. [PubMed]
  • Toraya T, Honda S, Fukui S. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. J Bacteriol. 1979 Jul;139(1):39–47. [PMC free article] [PubMed]
  • Trzebiatowski JR, O'Toole GA, Escalante-Semerena JC. The cobT gene of Salmonella typhimurium encodes the NaMN: 5,6-dimethylbenzimidazole phosphoribosyltransferase responsible for the synthesis of N1-(5-phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole, an intermediate in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1994 Jun;176(12):3568–3575. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...