• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1996; 178(23): 6983–6990.
PMCID: PMC178602

Transcriptional organization and regulation of the dnaK and groE operons of Chlamydia trachomatis.


The transcriptional organization and regulation of the dnaK and groE heat shock operons of Chlamydia trachomatis were studied and found to resemble those of the cognate operons of Bacillus subtilis and Clostridium acetobutylicum. The gene order is conserved (hrcA-grpE-dnaK), but no dnaJ homolog could be identified in this region. The dnaK operon was transcribed as a low-abundance polycistronic mRNA whose levels did not increase upon exposure to heat shock. In contrast, a more abundant 2.3-kb mRNA encoding only the dnaK sequence was detectable, and its steady-state level increased upon heat shock. The transcription initiation sites of the dnaK and groE operons were found to be preceded by sequences that resemble an Escherichia coli sigma70 consensus promoter. Upstream of each putative promoter is an inverted repeat sequence which resembles a similar element (CIRCE [controlling inverted repeat of chaperone expression]) found upstream of the dnaK and groE operons in at least 27 eubacterial species. In vitro transcription studies utilizing partially purified C. trachomatis RNA polymerase demonstrated that the regions containing the putative promoter elements of the dnaK and groE operons are functional, although heat shock-regulated expression could not be demonstrated.

Full Text

The Full Text of this article is available as a PDF (488K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Beatty WL, Byrne GI, Morrison RP. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 1994 Mar;2(3):94–98. [PubMed]
  • Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol. 1993 Aug;9(4):671–680. [PubMed]
  • Cerrone MC, Ma JJ, Stephens RS. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun. 1991 Jan;59(1):79–90. [PMC free article] [PubMed]
  • Danilition SL, Maclean IW, Peeling R, Winston S, Brunham RC. The 75-kilodalton protein of Chlamydia trachomatis: a member of the heat shock protein 70 family? Infect Immun. 1990 Jan;58(1):189–196. [PMC free article] [PubMed]
  • Engel JN, Pollack J, Perara E, Ganem D. Heat shock response of murine Chlamydia trachomatis. J Bacteriol. 1990 Dec;172(12):6959–6972. [PMC free article] [PubMed]
  • Engel JN, Ganem D. Chlamydial rRNA operons: gene organization and identification of putative tandem promoters. J Bacteriol. 1987 Dec;169(12):5678–5685. [PMC free article] [PubMed]
  • Hecker M, Schumann W, Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. [PubMed]
  • Kikuta LC, Puolakkainen M, Kuo CC, Campbell LA. Isolation and sequence analysis of the Chlamydia pneumoniae GroE operon. Infect Immun. 1991 Dec;59(12):4665–4669. [PMC free article] [PubMed]
  • Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. [PubMed]
  • Morrison RP, Belland RJ, Lyng K, Caldwell HD. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med. 1989 Oct 1;170(4):1271–1283. [PMC free article] [PubMed]
  • Narberhaus F, Bahl H. Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J Bacteriol. 1992 May;174(10):3282–3289. [PMC free article] [PubMed]
  • Narberhaus F, Giebeler K, Bahl H. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol. 1992 May;174(10):3290–3299. [PMC free article] [PubMed]
  • Ohta T, Honda K, Kuroda M, Saito K, Hayashi H. Molecular characterization of the gene operon of heat shock proteins HSP60 and HSP10 in methicillin-resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1993 Jun 15;193(2):730–737. [PubMed]
  • Ohta T, Saito K, Kuroda M, Honda K, Hirata H, Hayashi H. Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus. J Bacteriol. 1994 Aug;176(15):4779–4783. [PMC free article] [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Schachter J. The intracellular life of Chlamydia. Curr Top Microbiol Immunol. 1988;138:109–139. [PubMed]
  • Schmidt A, Schiesswohl M, Völker U, Hecker M, Schumann W. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol. 1992 Jun;174(12):3993–3999. [PMC free article] [PubMed]
  • Schmiel DH, Wyrick PB. Another putative heat-shock gene and aminoacyl-tRNA synthetase gene are located upstream from the grpE-like and dnaK-like genes in Chlamydia trachomatis. Gene. 1994 Jul 22;145(1):57–63. [PubMed]
  • Schulz A, Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol. 1996 Feb;178(4):1088–1093. [PMC free article] [PubMed]
  • Schulz A, Tzschaschel B, Schumann W. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol Microbiol. 1995 Feb;15(3):421–429. [PubMed]
  • Tan M, Engel JN. Identification of sequences necessary for transcription in vitro from the Chlamydia trachomatis rRNA P1 promoter. J Bacteriol. 1996 Dec;178(23):6975–6982. [PMC free article] [PubMed]
  • Tan M, Klein R, Grant R, Ganem D, Engel J. Cloning and characterization of the RNA polymerase alpha-subunit operon of Chlamydia trachomatis. J Bacteriol. 1993 Nov;175(22):7150–7159. [PMC free article] [PubMed]
  • van Asseldonk M, Simons A, Visser H, de Vos WM, Simons G. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol. 1993 Mar;175(6):1637–1644. [PMC free article] [PubMed]
  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. [PubMed]
  • Webb R, Reddy KJ, Sherman LA. Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol. 1990 Sep;172(9):5079–5088. [PMC free article] [PubMed]
  • Wetzstein M, Völker U, Dedio J, Löbau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol. 1992 May;174(10):3300–3310. [PMC free article] [PubMed]
  • Yuan G, Wong SL. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol. 1995 Nov;177(22):6462–6468. [PMC free article] [PubMed]
  • Yuan G, Wong SL. Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol. 1995 Oct;177(19):5427–5433. [PMC free article] [PubMed]
  • Yura T, Nagai H, Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. [PubMed]
  • Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol. 1994 Mar;176(5):1359–1363. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...