Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1996 Dec; 178(23): 6752–6758.
PMCID: PMC178571

Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli.


CheA is a histidine kinase central to the signal transduction pathway for chemotaxis in Escherichia coli. CheA autophosphorylates at His-48, with ATP as the phosphodonor, and then donates its phosphoryl groups to two aspartate autokinases, CheY and CheB. Phospho-CheY controls the flagellar motors, whereas phospho-CheB participates in sensory adaptation. Polypeptides encompassing the N-terminal P1 domain of CheA can be transphosphorylated in vitro by the CheA catalytic domain and yet have no deleterious effect on chemotactic ability when expressed at high levels in wild-type cells. To find out why, we examined the effects of a purified P1 fragment, CheA[1-149], on CheA-related signaling activities in vitro and devised in vivo assays for those same activities. Although readily phosphorylated by CheA[260-537], the CheA catalytic domain, CheA[1-149], was a poor substrate for transphosphorylation by full-length CheA molecules, implying that the resident P1 domain monopolizes the CheA catalytic center. CheA-H48Q, a nonphosphorylatable mutant, failed to transphosphorylate CheA[1-149], suggesting that phosphorylation of the P1 domain in cis may alleviate the exclusion effect. In agreement with these findings, a 40-fold excess of CheA[1-149] fragments did not impair the CheA autophosphorylation reaction. CheA[1-149] did acquire phosphoryl groups via reversible phosphotransfer reactions with CheB and CheY molecules. An H48Q mutant of CheA[1-149] could not participate in these reactions, indicating that His-48 is probably the substrate site. The low level of efficiency of these phosphotransfer reactions and the inability of CheA[1-149] to interfere with CheA autophosphorylation most likely account for the failure of liberated P1 domains to jam chemotactic signaling in wild-type cells. However, an excess of CheA[1-149] fragments was able to support chemotactic signaling by P1-deficient cheA mutants, demonstrating that CheA[1-149] fragments have both transphosphorylation and phosphotransfer capability in vivo.

Full Text

The Full Text of this article is available as a PDF (261K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. [PubMed]
  • Ames P, Parkinson JS. Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol. 1994 Oct;176(20):6340–6348. [PMC free article] [PubMed]
  • Barak R, Eisenbach M. Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry. 1992 Feb 18;31(6):1821–1826. [PubMed]
  • Borkovich KA, Kaplan N, Hess JF, Simon MI. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1208–1212. [PMC free article] [PubMed]
  • Borkovich KA, Simon MI. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell. 1990 Dec 21;63(6):1339–1348. [PubMed]
  • Bourret RB, Davagnino J, Simon MI. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J Bacteriol. 1993 Apr;175(7):2097–2101. [PMC free article] [PubMed]
  • Burbulys D, Trach KA, Hoch JA. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. [PubMed]
  • Chun SY, Parkinson JS. Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science. 1988 Jan 15;239(4837):276–278. [PubMed]
  • Dutta R, Inouye M. Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem. 1996 Jan 19;271(3):1424–1429. [PubMed]
  • Gegner JA, Graham DR, Roth AF, Dahlquist FW. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992 Sep 18;70(6):975–982. [PubMed]
  • Hess JF, Bourret RB, Simon MI. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature. 1988 Nov 10;336(6195):139–143. [PubMed]
  • Hess JF, Oosawa K, Matsumura P, Simon MI. Protein phosphorylation is involved in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7609–7613. [PMC free article] [PubMed]
  • Kofoid EC, Parkinson JS. Tandem translation starts in the cheA locus of Escherichia coli. J Bacteriol. 1991 Mar;173(6):2116–2119. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Li J, Swanson RV, Simon MI, Weis RM. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry. 1995 Nov 14;34(45):14626–14636. [PubMed]
  • Liu JD, Parkinson JS. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8703–8707. [PMC free article] [PubMed]
  • Lupas A, Stock J. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J Biol Chem. 1989 Oct 15;264(29):17337–17342. [PubMed]
  • Matsumura P, Rydel JJ, Linzmeier R, Vacante D. Overexpression and sequence of the Escherichia coli cheY gene and biochemical activities of the CheY protein. J Bacteriol. 1984 Oct;160(1):36–41. [PMC free article] [PubMed]
  • Morrison TB, Parkinson JS. Liberation of an interaction domain from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5485–5489. [PMC free article] [PubMed]
  • Morrison TB, Parkinson S. Quantifying radiolabeled macromolecules and small molecules on a single gel. Biotechniques. 1994 Nov;17(5):922–926. [PubMed]
  • Ninfa EG, Stock A, Mowbray S, Stock J. Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J Biol Chem. 1991 May 25;266(15):9764–9770. [PubMed]
  • Oosawa K, Hess JF, Simon MI. Mutants defective in bacterial chemotaxis show modified protein phosphorylation. Cell. 1988 Apr 8;53(1):89–96. [PubMed]
  • Parkinson JS. cheA, cheB, and cheC genes of Escherichia coli and their role in chemotaxis. J Bacteriol. 1976 May;126(2):758–770. [PMC free article] [PubMed]
  • Parkinson JS, Houts SE. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol. 1982 Jul;151(1):106–113. [PMC free article] [PubMed]
  • Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992;26:71–112. [PubMed]
  • Sanatinia H, Kofoid EC, Morrison TB, Parkinson JS. The smaller of two overlapping cheA gene products is not essential for chemotaxis in Escherichia coli. J Bacteriol. 1995 May;177(10):2713–2720. [PMC free article] [PubMed]
  • Smith RA, Parkinson JS. Overlapping genes at the cheA locus of Escherichia coli. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5370–5374. [PMC free article] [PubMed]
  • Swanson RV, Bourret RB, Simon MI. Intermolecular complementation of the kinase activity of CheA. Mol Microbiol. 1993 May;8(3):435–441. [PubMed]
  • Swanson RV, Schuster SC, Simon MI. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. Biochemistry. 1993 Aug 3;32(30):7623–7629. [PubMed]
  • Tsuzuki M, Ishige K, Mizuno T. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol Microbiol. 1995 Dec;18(5):953–962. [PubMed]
  • Uhl MA, Miller JF. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 1996 Mar 1;15(5):1028–1036. [PMC free article] [PubMed]
  • Welch M, Oosawa K, Aizawa S, Eisenbach M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8787–8791. [PMC free article] [PubMed]
  • Wolfe AJ, Stewart RC. The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1518–1522. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...