Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. May 1996; 178(9): 2637–2644.
PMCID: PMC177989

Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression.


In Bacillus subtilis, aryl-beta-glucosides such as salicin and arbutin are catabolized by the gene products of bglP and bglH, encoding an enzyme II of the phosphoenolpyruvate sugar-phosphotransferase system and a phospho-beta-glucosidase, respectively. These two genes are transcribed from a single promoter. The presence of a transcript of about 4,000 nucleotides detected by Northern (RNA) blot analysis indicates that bglP and bglH are part of an operon. However, this transcript is only present when cells are grown in the presence of the inducing substrate, salicin. In the absence of the inducer, a transcript of about 110 nucleotides can be detected, suggesting that transcription terminates downstream of the promoter at a stable termination structure. Initiation of transcription is abolished in the presence of rapidly metabolized carbon sources. Catabolite repression of bglPH expression involves the trans-acting factors CcpA and HPr. In a ccpA mutant, transcription initiation is relieved from glucose repression. Furthermore, we report a catabolite responsive element-CcpA-independent form of catabolite repression requiring the ribonucleic antiterminator-terminator region, which is the target of antitermination, and the wild-type HPr protein of the phosphotransferase system. Evidence that the antitermination protein LicT is a crucial element for this type of regulation is provided.

Full Text

The Full Text of this article is available as a PDF (493K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnaud M, Vary P, Zagorec M, Klier A, Debarbouille M, Postma P, Rapoport G. Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol. 1992 May;174(10):3161–3170. [PMC free article] [PubMed]
  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed]
  • Crutz AM, Steinmetz M, Aymerich S, Richter R, Le Coq D. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol. 1990 Feb;172(2):1043–1050. [PMC free article] [PubMed]
  • Debarbouille M, Arnaud M, Fouet A, Klier A, Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. [PMC free article] [PubMed]
  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol. 1995 Mar;15(6):1049–1053. [PubMed]
  • Deutscher J, Pevec B, Beyreuther K, Kiltz HH, Hengstenberg W. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry. 1986 Oct 21;25(21):6543–6551. [PubMed]
  • Deutscher J, Reizer J, Fischer C, Galinier A, Saier MH, Jr, Steinmetz M. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol. 1994 Jun;176(11):3336–3344. [PMC free article] [PubMed]
  • Eisermann R, Deutscher J, Gonzy-Treboul G, Hengstenberg W. Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. Isolation and characterization of heat-stable proteins altered at the ATP-dependent regulatory phosphorylation site. J Biol Chem. 1988 Nov 15;263(32):17050–17054. [PubMed]
  • Fisher SH, Sonenshein AL. Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu Rev Microbiol. 1991;45:107–135. [PubMed]
  • Grundy FJ, Turinsky AJ, Henkin TM. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J Bacteriol. 1994 Aug;176(15):4527–4533. [PMC free article] [PubMed]
  • Grundy FJ, Waters DA, Allen SH, Henkin TM. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol. 1993 Nov;175(22):7348–7355. [PMC free article] [PubMed]
  • Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. [PubMed]
  • Houman F, Diaz-Torres MR, Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. [PubMed]
  • Hueck CJ, Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol. 1995 Feb;15(3):395–401. [PubMed]
  • Hueck CJ, Hillen W, Saier MH., Jr Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol. 1994 Sep;145(7):503–518. [PubMed]
  • Jacob S, Allmansberger R, Gärtner D, Hillen W. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Mol Gen Genet. 1991 Oct;229(2):189–196. [PubMed]
  • Kim JH, Guvener ZT, Cho JY, Chung KC, Chambliss GH. Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol. 1995 Sep;177(17):5129–5134. [PMC free article] [PubMed]
  • Kraus A, Hueck C, Gärtner D, Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol. 1994 Mar;176(6):1738–1745. [PMC free article] [PubMed]
  • Krüger S, Hecker M. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol. 1995 Oct;177(19):5590–5597. [PMC free article] [PubMed]
  • Krüger S, Stülke J, Hecker M. Catabolite repression of beta-glucanase synthesis in Bacillus subtilis. J Gen Microbiol. 1993 Sep;139(9):2047–2054. [PubMed]
  • Le Coq D, Lindner C, Krüger S, Steinmetz M, Stülke J. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol. 1995 Mar;177(6):1527–1535. [PMC free article] [PubMed]
  • Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. [PMC free article] [PubMed]
  • Martin-Verstraete I, Stülke J, Klier A, Rapoport G. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol. 1995 Dec;177(23):6919–6927. [PMC free article] [PubMed]
  • Miwa Y, Fujita Y. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon. J Biochem. 1993 Jun;113(6):665–671. [PubMed]
  • Nicholson WL, Park YK, Henkin TM, Won M, Weickert MJ, Gaskell JA, Chambliss GH. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol. 1987 Dec 20;198(4):609–618. [PubMed]
  • Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. [PMC free article] [PubMed]
  • Reizer J, Sutrina SL, Saier MH, Stewart GC, Peterkofsky A, Reddy P. Mechanistic and physiological consequences of HPr(ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J. 1989 Jul;8(7):2111–2120. [PMC free article] [PubMed]
  • Schnetz K, Rak B. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5074–5078. [PMC free article] [PubMed]
  • Steinmetz M, Richter R. Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome. J Bacteriol. 1994 Mar;176(6):1761–1763. [PMC free article] [PubMed]
  • Steinmetz M, Richter R. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene. 1994 May 3;142(1):79–83. [PubMed]
  • Stülke J, Martin-Verstraete I, Charrier V, Klier A, Deutscher J, Rapoport G. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol. 1995 Dec;177(23):6928–6936. [PMC free article] [PubMed]
  • Sun DX, Takahashi I. A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis. Can J Microbiol. 1984 Apr;30(4):423–429. [PubMed]
  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. [PubMed]
  • Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed]
  • Weickert MJ, Chambliss GH. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6238–6242. [PMC free article] [PubMed]
  • Wetzstein M, Völker U, Dedio J, Löbau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol. 1992 May;174(10):3300–3310. [PMC free article] [PubMed]
  • Wray LV, Jr, Pettengill FK, Fisher SH. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol. 1994 Apr;176(7):1894–1902. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...