Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1996 Mar; 178(5): 1394–1400.
PMCID: PMC177814

Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli.


The Escherichia coli mutant (ppk) lacking the enzyme polyphosphate kinase, which makes long chains of inorganic polyphosphate (poly P), is deficient in functions expressed in the stationary phase of growth. After 2 days of growth in a medium limited in carbon sources, only 7% of the mutants survived compared with nearly 100% of the wild type; the loss in viability of the mutant was even more pronounced in a rich medium. The mutant showed a greater sensitivity to heat, to an oxidant (H2O2), to a redox-cycling agent (menadione), and to an osmotic challenge with 2.5 M NaCl. After a week or so in the stationary phase, mutant survivors were far fewer in number and were replaced by an outgrowth of a small-colony-size variant with a stable genotype and with improved viability and resistance to heat and H2O2; neither polyphosphate kinase nor long-chain poly P was restored. Suppression of the ppk feature of heat sensitivity by extra copies of rpoS, the gene encoding the RNA polymerase sigma factor that regulates some 50 stationary-phase genes, further implicates poly P in promoting survival in the stationary phase.

Full Text

The Full Text of this article is available as a PDF (242K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Akiyama M, Crooke E, Kornberg A. The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. J Biol Chem. 1992 Nov 5;267(31):22556–22561. [PubMed]
  • Akiyama M, Crooke E, Kornberg A. An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem. 1993 Jan 5;268(1):633–639. [PubMed]
  • Almirón M, Link AJ, Furlong D, Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992 Dec;6(12B):2646–2654. [PubMed]
  • Archibald FS, Fridovich I. Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys. 1982 May;215(2):589–596. [PubMed]
  • BEERS RF, Jr, SIZER IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed]
  • Bohannon DE, Connell N, Keener J, Tormo A, Espinosa-Urgel M, Zambrano MM, Kolter R. Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol. 1991 Jul;173(14):4482–4492. [PMC free article] [PubMed]
  • Bol DK, Yasbin RE. Characterization of an inducible oxidative stress system in Bacillus subtilis. J Bacteriol. 1990 Jun;172(6):3503–3506. [PMC free article] [PubMed]
  • Bonting CF, Kortstee GJ, Zehnder AJ. Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210A. J Bacteriol. 1991 Oct;173(20):6484–6488. [PMC free article] [PubMed]
  • Clare DA, Duong MN, Darr D, Archibald F, Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem. 1984 Aug 1;140(2):532–537. [PubMed]
  • Crooke E, Akiyama M, Rao NN, Kornberg A. Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem. 1994 Mar 4;269(9):6290–6295. [PubMed]
  • Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet. 1991;25:315–337. [PubMed]
  • Demple B, Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4;304(5925):466–468. [PubMed]
  • Dunn T, Gable K, Beeler T. Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem. 1994 Mar 11;269(10):7273–7278. [PubMed]
  • Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. [PubMed]
  • Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol. 1993 Dec;175(24):7982–7989. [PMC free article] [PubMed]
  • Greenberg JT, Demple B. Overproduction of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR-mutants. EMBO J. 1988 Aug;7(8):2611–2617. [PMC free article] [PubMed]
  • Greenberg JT, Demple B. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J Bacteriol. 1989 Jul;171(7):3933–3939. [PMC free article] [PubMed]
  • Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell. 1993 Jan 29;72(2):165–168. [PubMed]
  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. [PMC free article] [PubMed]
  • Hengge-Aronis R, Lange R, Henneberg N, Fischer D. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol. 1993 Jan;175(1):259–265. [PMC free article] [PubMed]
  • Hsieh PC, Shenoy BC, Jentoft JE, Phillips NF. Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Expr Purif. 1993 Feb;4(1):76–84. [PubMed]
  • Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 1988 Apr 29;240(4852):640–642. [PubMed]
  • Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. [PubMed]
  • Ivanova A, Miller C, Glinsky G, Eisenstark A. Role of rpoS (katF) in oxyR-independent regulation of hydroperoxidase I in Escherichia coli. Mol Microbiol. 1994 May;12(4):571–578. [PubMed]
  • Jenkins DE, Chaisson SA, Matin A. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol. 1990 May;172(5):2779–2781. [PMC free article] [PubMed]
  • Jenkins DE, Schultz JE, Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. [PMC free article] [PubMed]
  • Keasling JD, Bertsch L, Kornberg A. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7029–7033. [PMC free article] [PubMed]
  • Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol. 1995 Feb;177(3):491–496. [PMC free article] [PubMed]
  • Lange R, Barth M, Hengge-Aronis R. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J Bacteriol. 1993 Dec;175(24):7910–7917. [PMC free article] [PubMed]
  • Lange R, Hengge-Aronis R. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol. 1991 Jul;173(14):4474–4481. [PMC free article] [PubMed]
  • Li C, Clarke S. A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9885–9889. [PMC free article] [PubMed]
  • Loewen PC, Switala J, Triggs-Raine BL. Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys. 1985 Nov 15;243(1):144–149. [PubMed]
  • McCann MP, Kidwell JP, Matin A. The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol. 1991 Jul;173(13):4188–4194. [PMC free article] [PubMed]
  • Mulvey MR, Sorby PA, Triggs-Raine BL, Loewen PC. Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene. 1988 Dec 20;73(2):337–345. [PubMed]
  • Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. [PMC free article] [PubMed]
  • Phillips NF, Horn PJ, Wood HG. The polyphosphate- and ATP-dependent glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein. Arch Biochem Biophys. 1993 Jan;300(1):309–319. [PubMed]
  • Pick U, Bental M, Chitlaru E, Weiss M. Polyphosphate-hydrolysis--a protective mechanism against alkaline stress? FEBS Lett. 1990 Nov 12;274(1-2):15–18. [PubMed]
  • Pick U, Weiss M. Polyphosphate Hydrolysis within Acidic Vacuoles in Response to Amine-Induced Alkaline Stress in the Halotolerant Alga Dunaliella salina. Plant Physiol. 1991 Nov;97(3):1234–1240. [PMC free article] [PubMed]
  • Rao NN, Roberts MF, Torriani A. Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions. J Bacteriol. 1985 Apr;162(1):242–247. [PMC free article] [PubMed]
  • Reusch RN, Sadoff HL. Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4176–4180. [PMC free article] [PubMed]
  • Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. [PMC free article] [PubMed]
  • Siegele DA, Kolter R. Life after log. J Bacteriol. 1992 Jan;174(2):345–348. [PMC free article] [PubMed]
  • Siegele DA, Kolter R. Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation. Genes Dev. 1993 Dec;7(12B):2629–2640. [PubMed]
  • Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H. Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3511–3515. [PMC free article] [PubMed]
  • Thor H, Smith MT, Hartzell P, Bellomo G, Jewell SA, Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed]
  • Tormo A, Almirón M, Kolter R. surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol. 1990 Aug;172(8):4339–4347. [PMC free article] [PubMed]
  • van Groenestijn JW, Zuidema M, van de Worp JJ, Deinema MH, Zehnder AJ. Influence of environmental parameters on polyphosphate accumulation in Acinetobacter sp. Antonie Van Leeuwenhoek. 1989;55(1):67–82. [PubMed]
  • Van Veen HW, Abee T, Kortstee GJ, Konings WN, Zehnder AJ. Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A. J Bacteriol. 1993 Jan;175(1):200–206. [PMC free article] [PubMed]
  • Wada A, Yamazaki Y, Fujita N, Ishihama A. Structure and probable genetic location of a "ribosome modulation factor" associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2657–2661. [PMC free article] [PubMed]
  • Weichart D, Lange R, Henneberg N, Hengge-Aronis R. Identification and characterization of stationary phase-inducible genes in Escherichia coli. Mol Microbiol. 1993 Oct;10(2):407–420. [PubMed]
  • Wood HG, Clark JE. Biological aspects of inorganic polyphosphates. Annu Rev Biochem. 1988;57:235–260. [PubMed]
  • Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol. 1991 May;173(9):2864–2871. [PMC free article] [PubMed]
  • Wurst H, Shiba T, Kornberg A. The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol. 1995 Feb;177(4):898–906. [PMC free article] [PubMed]
  • Yamagishi M, Matsushima H, Wada A, Sakagami M, Fujita N, Ishihama A. Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J. 1993 Feb;12(2):625–630. [PMC free article] [PubMed]
  • Zambrano MM, Siegele DA, Almirón M, Tormo A, Kolter R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science. 1993 Mar 19;259(5102):1757–1760. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • Gene
    Gene records that cite the current articles. Citations in Gene are added manually by NCBI or imported from outside public resources.
  • GEO Profiles
    GEO Profiles
    Gene Expression Omnibus (GEO) Profiles of molecular abundance data. The current articles are references on the Gene record associated with the GEO profile.
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...