• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Dec 1995; 177(24): 7011–7018.
PMCID: PMC177576

A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes.

Abstract

A system for generating chromosomal insertions in lactococci is described. It is based on the conditional replication of lactococcal pWV01-derived Ori+ RepA- vector pORI19, containing lacZ alpha and the multiple cloning site of pUC19. Chromosomal AluI fragments of Lactococcus lactis were cloned in pORI19 in RepA+ helper strain Escherichia coli EC101. The frequency of Campbell-type recombinants, following introduction of this plasmid bank into L. lactis (RepA-), was increased by combining the system with temperature-sensitive pWV01 derivative pVE6007. Transformation of L. lactis MG1363 (pVE6007) with the pORI19 bank of lactococcal chromosomal fragments at the permissive temperature allowed replication of several copies of a recombinant plasmid from the bank within a cell because of the provision in trans of RepA-Ts from pVE6007. A temperature shift to 37 degrees C resulted in loss of pVE6007 and integration of the pORI19 derivatives at high frequencies. A bank of lactococcal mutants was made in this way and successfully screened for the presence of two mutations: one in the monocistronic 1.3-kb peptidoglycan hydrolase gene (acmA) and one in the hitherto uncharacterized maltose fermentation pathway. Reintroduction of pVE6007 into the Mal- mutant at 30 degrees C resulted in excision of the integrated plasmid and restoration of the ability of ferment maltose. The integration plasmid (pMAL) was rescued by using the isolated plasmid content of a restored Mal+ colony to transform E. coli EC101. Nucleotide sequencing of the 564-bp chromosomal fragment in pMAL revealed an internal part of an open reading frame of which the translated product showed significant homology with ATP-binding proteins MalK of E. coli, Salmonella typhimurium, and Enterobacter aerogenes and MsmK of Streptococcus mutans. This combined use of two types of conditional replicating pWV01-derived vectors represents a novel, powerful tool for chromosomal gene inactivation, targeting, cloning, and sequencing of the labelled gene.

Full Text

The Full Text of this article is available as a PDF (395K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Biswas I, Gruss A, Ehrlich SD, Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993 Jun;175(11):3628–3635. [PMC free article] [PubMed]
  • Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol. 1995 Mar;177(6):1554–1563. [PMC free article] [PubMed]
  • Chomczynski P, Qasba PK. Alkaline transfer of DNA to plastic membrane. Biochem Biophys Res Commun. 1984 Jul 18;122(1):340–344. [PubMed]
  • Dahl MK, Francoz E, Saurin W, Boos W, Manson MD, Hofnung M. Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K12: a potential new regulatory site in the interoperonic region. Mol Gen Genet. 1989 Aug;218(2):199–207. [PubMed]
  • Damotte M, Cattanéo J, Sigal N, Puig J. Mutants of Escherichia coli K 12 altered in their ability to store glycogen. Biochem Biophys Res Commun. 1968 Sep 30;32(6):916–920. [PubMed]
  • Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. [PMC free article] [PubMed]
  • Fitzgerald GF, Gasson MJ. In vivo gene transfer systems and transposons. Biochimie. 1988 Apr;70(4):489–502. [PubMed]
  • Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. [PMC free article] [PubMed]
  • Fitzgerald GF, Gasson MJ. In vivo gene transfer systems and transposons. Biochimie. 1988 Apr;70(4):489–502. [PubMed]
  • Gawron-Burke C, Clewell DB. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 1984 Jul;159(1):214–221. [PMC free article] [PubMed]
  • Gilson E, Nikaido H, Hofnung M. Sequence of the malK gene in E.coli K12. Nucleic Acids Res. 1982 Nov 25;10(22):7449–7458. [PMC free article] [PubMed]
  • Govons S, Vinopal R, Ingraham J, Preiss J. Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen. J Bacteriol. 1969 Feb;97(2):970–972. [PMC free article] [PubMed]
  • Hengge R, Boos W. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim Biophys Acta. 1983 Aug 11;737(3-4):443–478. [PubMed]
  • Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. [PubMed]
  • Hill C, Daly C, Fitzgerald GF. Development of High-Frequency Delivery System for Transposon Tn919 in Lactic Streptococci: Random Insertion in Streptococcus lactis subsp. diacetylactis 18-16. Appl Environ Microbiol. 1987 Jan;53(1):74–78. [PMC free article] [PubMed]
  • Holo H, Nes IF. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. [PMC free article] [PubMed]
  • Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. [PubMed]
  • Ish-Horowicz D, Burke JF. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. [PMC free article] [PubMed]
  • Kiel JA, Vossen JP, Venema G. A general method for the construction of Escherichia coli mutants by homologous recombination and plasmid segregation. Mol Gen Genet. 1987 May;207(2-3):294–301. [PubMed]
  • Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ, Ritzenthaler P. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. J Bacteriol. 1995 May;177(10):2840–2850. [PMC free article] [PubMed]
  • Leenhouts KJ, Kok J, Venema G. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989 Feb;55(2):394–400. [PMC free article] [PubMed]
  • Leenhouts KJ, Kok J, Venema G. Replacement recombination in Lactococcus lactis. J Bacteriol. 1991 Aug;173(15):4794–4798. [PMC free article] [PubMed]
  • Leenhouts KJ, Kok J, Venema G. Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl Environ Microbiol. 1991 Sep;57(9):2562–2567. [PMC free article] [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Maguin E, Duwat P, Hege T, Ehrlich D, Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992 Sep;174(17):5633–5638. [PMC free article] [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Romero DA, Klaenhammer TR. IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1992 Feb;58(2):699–702. [PMC free article] [PubMed]
  • Rottländer E, Trautner TA. Genetic and transfection studies with B, subtilis phage SP 50. I. Phage mutants with restricted growth on B. subtilis strain 168. Mol Gen Genet. 1970;108(1):47–60. [PubMed]
  • Russell RR, Aduse-Opoku J, Sutcliffe IC, Tao L, Ferretti JJ. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992 Mar 5;267(7):4631–4637. [PubMed]
  • Sanders ME, Nicholson MA. A method for genetic transformation of nonprotoplasted Streptococcus lactis. Appl Environ Microbiol. 1987 Aug;53(8):1730–1736. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Shuman HA. The genetics of active transport in bacteria. Annu Rev Genet. 1987;21:155–177. [PubMed]
  • Terzaghi BE, Sandine WE. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. [PMC free article] [PubMed]
  • Trieu-Cuot P, Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene. 1983 Sep;23(3):331–341. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...