Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1995 Dec; 177(23): 6946–6951.
PMCID: PMC177564

AinS and a new family of autoinducer synthesis proteins.

Abstract

In Vibrio fischeri, the autoinducer N-3-oxohexanoyl-L-homoserine lactone (AI-1) governs the cell density-dependent induction of the luminescence operon via the LuxR transcriptional activator. The synthesis of AI-1 from bacterial metabolic intermediates is dependent on luxI. Recently, we found a second V. fischeri autoinducer molecule, N-octanoyl-L-homoserine lactone (AI-2), that in E. coli also activates the luminescence operon via LuxR. A locus independent of luxI was identified as being required for AI-2 synthesis. This 2.7-kb ain (autoinducer) locus was characterized by transposon insertion mutagenesis, deletion and complementation analysis, and DNA sequencing. A single 1,185-bp gene, ainS, was found to be the sole exogenous gene necessary for the synthesis of AI-2 in Escherichia coli. In addition, a V. fischeri ainS mutant produced AI-1 but not AI-2, confirming that in its native species ainS is specific for the synthesis of AI-2. ainS is predicted to encode a 45,580-Da protein which exhibits no similarity to LuxI or to any of the LuxI homologs responsible for the synthesis of N-acyl-L-homoserine lactones in a variety of other bacteria. The existence of two different and unrelated autoinducer synthesis genes suggests the occurrence of convergent evolution in the synthesis of homoserine lactone signaling molecules. The C-terminal half of AinS shows homology to a putative protein in Vibrio harveyi, LuxM, which is required for the synthesis of a V. harveyi bioluminescence autoinducer. Together, AinS and LuxM define a new family of autoinducer synthesis proteins. Furthermore, the predicted product of another gene, ainR, encoded immediately downstream of ainS, shows homology to LuxN, which is similarly encoded downstream of luxM in V. harveyi and proposed to have sensor/regulator functions in the bioluminescence response to the V. harveyi auto inducer. This similarity presents the possibility that AI-2, besides interacting with LuxR, also interacts with AinR under presently unknown conditions.

Full Text

The Full Text of this article is available as a PDF (263K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P. N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J. 1992 Dec 15;288(Pt 3):997–1004. [PMC free article] [PubMed]
  • Bassler BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 1993 Aug;9(4):773–786. [PubMed]
  • Berg CM, Vartak NB, Wang G, Xu X, Liu L, MacNeil DJ, Gewain KM, Wiater LA, Berg DE. The m gamma delta-1 element, a small gamma delta (Tn1000) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene. 1992 Apr 1;113(1):9–16. [PubMed]
  • Castilho BA, Olfson P, Casadaban MJ. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. [PMC free article] [PubMed]
  • Chung CT, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. [PMC free article] [PubMed]
  • Devine JH, Shadel GS, Baldwin TO. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5688–5692. [PMC free article] [PubMed]
  • Dunlap PV, Kuo A. Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol. 1992 Apr;174(8):2440–2448. [PMC free article] [PubMed]
  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 1981 Apr 28;20(9):2444–2449. [PubMed]
  • Eberhard A, Widrig CA, McBath P, Schineller JB. Analogs of the autoinducer of bioluminescence in Vibrio fischeri. Arch Microbiol. 1986 Oct;146(1):35–40. [PubMed]
  • Engebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4154–4158. [PMC free article] [PubMed]
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994 Jan;176(2):269–275. [PMC free article] [PubMed]
  • Gilson L, Mahanty HK, Kolter R. Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol. 1987 Jun;169(6):2466–2470. [PMC free article] [PubMed]
  • Gray KM, Passador L, Iglewski BH, Greenberg EP. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol. 1994 May;176(10):3076–3080. [PMC free article] [PubMed]
  • Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol. 1985 Sep;163(3):1210–1214. [PMC free article] [PubMed]
  • Kuo A, Blough NV, Dunlap PV. Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J Bacteriol. 1994 Dec;176(24):7558–7565. [PMC free article] [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Meighen EA, Dunlap PV. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol. 1993;34:1–67. [PubMed]
  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):197–201. [PMC free article] [PubMed]
  • Pearson JP, Passador L, Iglewski BH, Greenberg EP. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1490–1494. [PMC free article] [PubMed]
  • Pirhonen M, Flego D, Heikinheimo R, Palva ET. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 1993 Jun;12(6):2467–2476. [PMC free article] [PubMed]
  • Simon R, O'Connell M, Labes M, Pühler A. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol. 1986;118:640–659. [PubMed]
  • Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CE, Chhabra SR, Hill PJ, Throup JP, et al. A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol. 1993 Nov;10(3):511–520. [PubMed]
  • Zhang LH, Kerr A. A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol. 1991 Mar;173(6):1867–1872. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem chemical compound records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records. Multiple substance records may contribute to the PubChem compound record.
  • MedGen
    MedGen
    Related information in MedGen
  • Protein
    Protein
    Protein translation features of primary database (GenBank) nucleotide records reported in the current articles as well as Reference Sequences (RefSeqs) that include the articles as references.
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem chemical substance records that cite the current articles. These references are taken from those provided on submitted PubChem chemical substance records.

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...