Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1995 Sep; 177(17): 4927–4934.
PMCID: PMC177267

Characterization of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum.


Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.

Full Text

The Full Text of this article is available as a PDF (735K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Thöny-Meyer L, Fischer F, Künzler P, Ritz D, Hennecke H. Escherichia coli genes required for cytochrome c maturation. J Bacteriol. 1995 Aug;177(15):4321–4326. [PMC free article] [PubMed]
  • Beckman DL, Kranz RG. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2179–2183. [PMC free article] [PubMed]
  • Beckman DL, Trawick DR, Kranz RG. Bacterial cytochromes c biogenesis. Genes Dev. 1992 Feb;6(2):268–283. [PubMed]
  • Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Dumont ME, Ernst JF, Hampsey DM, Sherman F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):235–241. [PMC free article] [PubMed]
  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. [PubMed]
  • Hussain H, Grove J, Griffiths L, Busby S, Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol. 1994 Apr;12(1):153–163. [PubMed]
  • Kereszt A, Slaska-Kiss K, Putnoky P, Banfalvi Z, Kondorosi A. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. Mol Gen Genet. 1995 Apr 10;247(1):39–47. [PubMed]
  • Knight CD, Rossen L, Robertson JG, Wells B, Downie JA. Nodulation inhibition by Rhizobium leguminosarum multicopy nodABC genes and analysis of early stages of plant infection. J Bacteriol. 1986 May;166(2):552–558. [PMC free article] [PubMed]
  • Labes M, Pühler A, Simon R. A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene. 1990 Apr 30;89(1):37–46. [PubMed]
  • Mandon K, Kaminski PA, Elmerich C. Functional analysis of the fixNOQP region of Azorhizobium caulinodans. J Bacteriol. 1994 May;176(9):2560–2568. [PMC free article] [PubMed]
  • Marrs B, Gest H. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1973 Jun;114(3):1045–1051. [PMC free article] [PubMed]
  • Page MD, Ferguson SJ. Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c1. Mol Microbiol. 1995 Jan;15(2):307–318. [PubMed]
  • Poole RK, Salmon I, Chance B. The high-spin cytochrome o' component of the cytochrome bo-type quinol oxidase in membranes from Escherichia coli: formation of the primary oxygenated species at low temperatures is characterized by a slow 'on' rate and low dissociation constant. Microbiology. 1994 May;140(Pt 5):1027–1034. [PubMed]
  • Poole RK, Williams HD, Downie JA, Gibson F. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD. J Gen Microbiol. 1989 Jul;135(7):1865–1874. [PubMed]
  • Preisig O, Anthamatten D, Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309–3313. [PMC free article] [PubMed]
  • Ramseier TM, Winteler HV, Hennecke H. Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem. 1991 Apr 25;266(12):7793–7803. [PubMed]
  • Ritz D, Bott M, Hennecke H. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol. 1993 Aug;9(4):729–740. [PubMed]
  • Ritz D, Thöny-Meyer L, Hennecke H. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. Mol Gen Genet. 1995 Apr 10;247(1):27–38. [PubMed]
  • Schofield PR, Watson JM. DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res. 1986 Apr 11;14(7):2891–2903. [PMC free article] [PubMed]
  • Schuster W, Combettes B, Flieger K, Brennicke A. A plant mitochondrial gene encodes a protein involved in cytochrome c biogenesis. Mol Gen Genet. 1993 May;239(1-2):49–57. [PubMed]
  • Sherwood MT. Improved synthetic medium for the growth of Rhizobium. J Appl Bacteriol. 1970 Dec;33(4):708–713. [PubMed]
  • Soberón M, Aguilar GR, Sánchez F. Rhizobium phaseoli cytochrome c-deficient mutant induces empty nodules on Phaseolus vulgaris L. Mol Microbiol. 1993 Apr;8(1):159–166. [PubMed]
  • Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982 May 11;10(9):2951–2961. [PMC free article] [PubMed]
  • Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. [PMC free article] [PubMed]
  • Thöny-Meyer L, Ritz D, Hennecke H. Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Mol Microbiol. 1994 Apr;12(1):1–9. [PubMed]
  • Thöny-Meyer L, Stax D, Hennecke H. An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell. 1989 May 19;57(4):683–697. [PubMed]
  • Vargas C, Wu G, Davies AE, Downie JA. Identification of a gene encoding a thioredoxin-like product necessary for cytochrome c biosynthesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol. 1994 Jul;176(13):4117–4123. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...