Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Jun 1995; 177(11): 3351–3354.
PMCID: PMC177034

Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action.


The Zymomonas mobilis genes encoding the glucose facilitator (glf), glucokinase (glk), or fructokinase (frk) were cloned and expressed in a lacIq-Ptac system using Escherichia coli K-12 mutants deficient in uptake and phosphorylation of glucose and fructose. Growth on glucose or fructose was restored when the respective genes (glf-glk or glf-frk) were expressed. In E. coli glf+ strains, both glucose and fructose were taken up via facilitated diffusion (Km, 4.1 mM for glucose and 39 mM for fructose; Vmax at 15 degrees C, 75 and 93 nmol min-1 mg-1 [dry weight] for glucose and fructose, respectively). For both substrates, counterflow maxima were observed.

Full Text

The Full Text of this article is available as a PDF (275K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T. Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol. 1995 Mar;15(5):795–802. [PubMed]
  • Arfman N, Worrell V, Ingram LO. Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis. J Bacteriol. 1992 Nov;174(22):7370–7378. [PMC free article] [PubMed]
  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol. 1991 Dec;5(12):2913–2922. [PubMed]
  • Baldwin SA. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. [PubMed]
  • Baldwin SA, Henderson PJ. Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol. 1989;51:459–471. [PubMed]
  • Barnell WO, Liu J, Hesman TL, O'Neill MC, Conway T. The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J Bacteriol. 1992 May;174(9):2816–2823. [PMC free article] [PubMed]
  • Barnell WO, Yi KC, Conway T. Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism. J Bacteriol. 1990 Dec;172(12):7227–7240. [PMC free article] [PubMed]
  • Belaich JP, Senez JC, Murgier M. Microcalorimetric study of glucose permeation in microbial cells. J Bacteriol. 1968 May;95(5):1750–1757. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Curtis SJ, Epstein W. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol. 1975 Jun;122(3):1189–1199. [PMC free article] [PubMed]
  • Dimarco AA, Romano AH. d-Glucose Transport System of Zymomonas mobilis. Appl Environ Microbiol. 1985 Jan;49(1):151–157. [PMC free article] [PubMed]
  • Eddy CK, Smith OH, Noel KD. Cosmid cloning of five Zymomonas trp genes by complementation of Escherichia coli and Pseudomonas putida trp mutants. J Bacteriol. 1988 Jul;170(7):3158–3163. [PMC free article] [PubMed]
  • Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. [PubMed]
  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. [PubMed]
  • Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. [PMC free article] [PubMed]
  • Sahm H, Rohmer M, Bringer-Meyer S, Sprenger GA, Welle R. Biochemistry and physiology of hopanoids in bacteria. Adv Microb Physiol. 1993;35:247–273. [PubMed]
  • Schoberth SM, de Graaf AA. Use of in vivo 13C nuclear magnetic resonance spectroscopy to follow sugar uptake in Zymomonas mobilis. Anal Biochem. 1993 Apr;210(1):123–128. [PubMed]
  • Snoep JL, Arfman N, Yomano LP, Fliege RK, Conway T, Ingram LO. Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol. 1994 Apr;176(7):2133–2135. [PMC free article] [PubMed]
  • Sprenger GA, Lengeler JW. Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol. 1988 Jun;134(6):1635–1644. [PubMed]
  • Swings J, De Ley J. The biology of Zymomonas. Bacteriol Rev. 1977 Mar;41(1):1–46. [PMC free article] [PubMed]
  • Tanaka S, Lerner SA, Lin EC. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol. 1967 Feb;93(2):642–648. [PMC free article] [PubMed]
  • Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. [PubMed]
  • Walsh MC, Smits HP, Scholte M, van Dam K. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J Bacteriol. 1994 Feb;176(4):953–958. [PMC free article] [PubMed]
  • Zembrzuski B, Chilco P, Liu XL, Liu J, Conway T, Scopes R. Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases. J Bacteriol. 1992 Jun;174(11):3455–3460. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...