Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. Mar 1995; 177(6): 1554–1563.
PMCID: PMC176772

Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation.

Abstract

A gene of Lactococcus lactis subsp. cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells. In cell extracts of L. lactis MG1363 and several halo-producing E. coli transformants, lytic bands of similar sizes were identified by denaturing sodium dodecyl sulfate (SDS)-polyacrylamide gels containing L. lactis or M. lysodeikticus cell walls. Of these clearing bands, corresponding to the presence of lytic enzymes with sizes of 46 and 41 kDa, the 41-kDa band was also present in the supernatant of an L. lactis culture. Deletion analysis of one of the recombinant plasmids showed that the information specifying lytic activity was contained within a 2,428-bp EcoRV-Sau3A fragment. Sequencing of part of this fragment revealed a gene (acmA) that could encode a polypeptide of 437 amino acid residues. The calculated molecular mass of AcmA (46,564 Da) corresponded to that of one of the lytic activities detected. Presumably, the enzyme is synthesized as a precursor protein which is processed by cleavage after the Ala at position 57, thus producing a mature protein with a size of 40,264 Da, which would correspond to the size of the enzyme whose lytic activity was present in culture supernatants of L. lactis. The N-terminal region of the mature protein showed 60% identity with the N-terminal region of the mature muramidase-2 of Enterococcus hirae and the autolysin of Streptococcus faecalis. Like the latter two enzymes, AcmA contains C-terminal repeated regions. In AcmA, these three repeats are separated by nonhomologous intervening sequences highly enriched in serine, threonine, and asparagine. Genes specifying identical activities were detected in various strains of L. lactis subsp. lactis and L. lactis subsp. cremoris by the SDS-polyacrylamide gel electrophoresis detection assay and PCR experiments. By replacement recombination, an acmA deletion mutant which grew as long chains was constructed, indicating that AcmA is required for cell separation.

Full Text

The Full Text of this article is available as a PDF (479K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arendt EK, Daly C, Fitzgerald GF, van de Guchte M. Molecular characterization of lactococcal bacteriophage Tuc2009 and identification and analysis of genes encoding lysin, a putative holin, and two structural proteins. Appl Environ Microbiol. 1994 Jun;60(6):1875–1883. [PMC free article] [PubMed]
  • Bailey MJ, Koronakis V, Schmoll T, Hughes C. Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol. 1992 Apr;6(8):1003–1012. [PubMed]
  • Béliveau C, Potvin C, Trudel J, Asselin A, Bellemare G. Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin. J Bacteriol. 1991 Sep;173(18):5619–5623. [PMC free article] [PubMed]
  • Chiaruttini C, Milet M. Gene organization, primary structure and RNA processing analysis of a ribosomal RNA operon in Lactococcus lactis. J Mol Biol. 1993 Mar 5;230(1):57–76. [PubMed]
  • Chomczynski P, Qasba PK. Alkaline transfer of DNA to plastic membrane. Biochem Biophys Res Commun. 1984 Jul 18;122(1):340–344. [PubMed]
  • Chopin A, Chopin MC, Moillo-Batt A, Langella P. Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid. 1984 May;11(3):260–263. [PubMed]
  • Chu CP, Kariyama R, Daneo-Moore L, Shockman GD. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J Bacteriol. 1992 Mar;174(5):1619–1625. [PMC free article] [PubMed]
  • Daniels DL, Plunkett G, 3rd, Burland V, Blattner FR. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771–778. [PubMed]
  • de Vos WM, Vos P, de Haard H, Boerrigter I. Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene. 1989 Dec 21;85(1):169–176. [PubMed]
  • Doyle RJ, Chaloupka J, Vinter V. Turnover of cell walls in microorganisms. Microbiol Rev. 1988 Dec;52(4):554–567. [PMC free article] [PubMed]
  • Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. [PMC free article] [PubMed]
  • Holo H, Nes IF. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. [PMC free article] [PubMed]
  • Hourdou ML, Guinand M, Vacheron MJ, Michel G, Denoroy L, Duez C, Englebert S, Joris B, Weber G, Ghuysen JM. Characterization of the sporulation-related gamma-D-glutamyl-(L)meso-diaminopimelic-acid-hydrolysing peptidase I of Bacillus sphaericus NCTC 9602 as a member of the metallo(zinc) carboxypeptidase A family. Modular design of the protein. Biochem J. 1993 Jun 1;292(Pt 2):563–570. [PMC free article] [PubMed]
  • Jayaswal RK, Lee YI, Wilkinson BJ. Cloning and expression of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. J Bacteriol. 1990 Oct;172(10):5783–5788. [PMC free article] [PubMed]
  • Jolliffe LK, Doyle RJ, Streips UN. Extracellular proteases modify cell wall turnover in Bacillus subtilis. J Bacteriol. 1980 Mar;141(3):1199–1208. [PMC free article] [PubMed]
  • Jones CJ, Homma M, Macnab RM. L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences. J Bacteriol. 1989 Jul;171(7):3890–3900. [PMC free article] [PubMed]
  • Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD, Ghuysen JM. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett. 1992 Mar 15;70(3):257–264. [PubMed]
  • Kajie S, Ideta R, Yamato I, Anraku Y. Molecular cloning and DNA sequence of dniR, a gene affecting anaerobic expression of the Escherichia coli hexaheme nitrite reductase. FEMS Microbiol Lett. 1991 Oct 1;67(2):205–211. [PubMed]
  • Kuroda A, Sekiguchi J. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J Gen Microbiol. 1990 Nov;136(11):2209–2216. [PubMed]
  • Kuroda A, Sekiguchi J. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol. 1991 Nov;173(22):7304–7312. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Leclerc D, Asselin A. Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol. 1989 Aug;35(8):749–753. [PubMed]
  • Leenhouts KJ, Kok J, Venema G. Stability of Integrated Plasmids in the Chromosome of Lactococcus lactis. Appl Environ Microbiol. 1990 Sep;56(9):2726–2735. [PMC free article] [PubMed]
  • McDonald IJ. Filamentous forms of Streptococcus cremoris and Streptococcus lactis. Observations on structure and susceptibility to lysis. Can J Microbiol. 1971 Jul;17(7):897–902. [PubMed]
  • Sullivan JJ, Jago GR, Mou L. Autolysis of Streptococcus cremoris. J Dairy Res. 1976 Jun;43(2):275–282. [PubMed]
  • Oda Y, Nakayama R, Kuroda A, Sekiguchi J. Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis. Mol Gen Genet. 1993 Nov;241(3-4):380–388. [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Platt T. Transcription termination and the regulation of gene expression. Annu Rev Biochem. 1986;55:339–372. [PubMed]
  • Potvin C, Leclerc D, Tremblay G, Asselin A, Bellemare G. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol Gen Genet. 1988 Oct;214(2):241–248. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Seegers JF, Bron S, Franke CM, Venema G, Kiewiet R. The majority of lactococcal plasmids carry a highly related replicon. Microbiology. 1994 Jun;140(Pt 6):1291–1300. [PubMed]
  • Shockman GD. The autolytic ('suicidase') system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):261–267. [PubMed]
  • Tinoco I, Jr, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. [PubMed]
  • van de Guchte M, Kodde J, van der Vossen JM, Kok J, Venema G. Heterologous gene expression in Lactococcus lactis subsp. lactis: synthesis, secretion, and processing of the Bacillus subtilis neutral protease. Appl Environ Microbiol. 1990 Sep;56(9):2606–2611. [PMC free article] [PubMed]
  • van de Guchte M, Kok J, Venema G. Gene expression in Lactococcus lactis. FEMS Microbiol Rev. 1992 Feb;8(2):73–92. [PubMed]
  • Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene. 1991 Apr;100:189–194. [PubMed]
  • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. [PMC free article] [PubMed]
  • von Heijne G, Abrahmsén L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett. 1989 Feb 27;244(2):439–446. [PubMed]
  • Wuenscher MD, Köhler S, Bubert A, Gerike U, Goebel W. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol. 1993 Jun;175(11):3491–3501. [PMC free article] [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]
  • Zabarovsky ER, Allikmets RL. An improved technique for the efficient construction of gene libraries by partial filling-in of cohesive ends. Gene. 1986;42(1):119–123. [PubMed]
  • Zabarovsky ER, Winberg G. High efficiency electroporation of ligated DNA into bacteria. Nucleic Acids Res. 1990 Oct 11;18(19):5912–5912. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...