- We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

- Journal List
- PLoS ONE
- v.2(1); 2007
- PMC1764038

# Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Processes

^{}

^{1}Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America

^{2}Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America

Conceived and designed the experiments: DB HQ. Wrote the paper: DB HQ.

## Abstract

Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.

## Introduction

For a reaction occurring in an isothermal and isobaric system the chemical driving force Δ*G*—the Gibbs free energy difference—characterizes how far a chemical reaction is away from equilibrium. If we take a simple bimolecular reaction in a dilute solution

as an example, then Δ*G* is related to the concentrations of the reactants and products, as well as the equilibrium constant *K _{eq}*, through the well-known thermodynamic equation

If we further assume that the law of mass action governs the reaction's kinetics, then the forward and reverse reaction fluxes and equilibrium constant are

where *k*_{+1} and *k*_{−1} are constants that do not depend on the concentrations. Combining Equations (2) and (3) yields

Expressing Δ*G* in terms of Equation (4) has many advantages: It is apparent that if Δ*G*=0, then *J*^{+}=*J*^{−}. This equilibrium relationship is required by the principle of detailed balance, which states that at equilibrium the forward and reverse fluxes are equal for all existing independent mechanisms for the reaction AB [1]. Furthermore, Equation (4) can be generalized to many other situations. For example, for reversible enzyme reactions governed by Michaelis-Menten kinetics, although both *J*^{+} and *J*^{−} are complex, nonlinear functions of reactant and substrate concentrations, Equation (4) still holds true.

Another nontrivial example of Equation (4) that arises in cycle kinetics in unimolecular systems is due to T.L. Hill [2]–[5]. As in the example above, the law of mass action is assumed in all of Hill's work. The novelty of this note is to show a wide range of validity of Equation (4) based solely on conservation of mass, without invoking any assumptions of rate laws such as Equation (3). Hence, Equation (4) is in fact a fundamental relation for any chemical process operating in an open-system steady state.

The relation is also intimately related to the fluctuation theorem [6], [7], [8], [9]. However, the most significant insight from the present work is that the relation between one-way-fluxes and Δ*G* can be established without any supposition on the dynamics of a system.

## Analysis

### Flux and Free Energy in a Nonequilibrium Open System

For the reaction AB, the Gibbs free energy change per mole of molecules that transform from state A to state B is expressed

where *N _{A}* and

*N*are the number of molecules in states A and B, respectively. In equilibrium, the ratio

_{B}*N*/

_{B}*N*is equal to and the net reaction flux is

_{A}*J*=

*J*

^{+}−

*J*

^{−}=0, where

*J*

^{+}and

*J*

^{−}are the forward and reverse reaction fluxes, respectively. When Δ

*G*<0, the net flux

*J*from A to B is positive.

To determine how flux and free energy are related for systems not in equilibrium we consider, without loss of generality, the case where *N _{B}*/

*N*<

_{A}*K*and

_{eq}*J*>0. In a nonequilibrium steady state

*N*and

_{A}*N*are held constant by pumping A molecules into the system, and pumping B molecules out of the system, at the steady-state flux

_{B}*J*.

Next imagine that we are able to place a label on each molecule that converts from state B to state A. These particles we denote by A*. Apart from the label, A* molecules are identical in every way to unlabeled A molecules in this thought experiment. In addition, imagine that A* molecules lose their label when they convert to B molecules. Thus if we continue to pump A and B molecules into and out of the system at the constant flux *J*, then a steady state will be reached for which *N _{A}*

_{*}, the number of labeled molecules in state A*, is less than or equal to

*N*, the total number of labeled plus unlabeled molecules in state A.

_{A}The steady state is reached when the rate of conversion of labeled A* molecules into state B is equal to the rate of conversion from B to A*. Since there is no transport of A* into or out of the system, then in the steady state the *N _{A}*

_{*}molecules in state A* will be in equilibrium with the

*N*molecules in state B:

_{B}*N*/

_{B}*N*

_{A}_{*}=

*K*. Mass conservation requires that the forward flux of A*→B equal the reverse flux of B→A*, or . Combining these equations, we have:

_{eq}This relationships hold for a reaction operating in any steady state, including thermodynamic equilibrium. In equilibrium, *J*^{+}=*J*^{−}, and

Thus it is trivial that Equation (6) holds in equilibrium. The more interesting case is a nonequilibrium steady state for which Equations (5) and (6) yield Equation (4). Therefore Equation (4) is a condition that does not depend on the details of the kinetic reaction mechanism that is operating in a particular system. In addition, the above proof is easily generalized to apply to multimolecular (non-uni-unimolecular) chemical reactions or any spontaneous process transforming or transporting mass from one state to another. Therefore Equation (4) represents a fundamental property of any chemical process in dilute solution.

### Relationship to other Theories

#### Hill Equation for Catalytic Cycles

For the case of a catalytic cycle with *J*^{+}/*J*^{−} equal to the ratio of the forward-to-reverse cycle flux and Δ*G* equal to the thermodynamic driving force for the cycle, Equation (4) is identical to the relationship introduced by Hill [2], [5], [10] and proved by Kohler and Vollmerhaus [11] and by Qian et al. [12] for cycles in Markov systems. (See Equations (3.7) and (7.8) in [5].) Therefore the relationship between *J*^{+}/*J*^{−} and Δ*G* introduced by Hill for linear cycle kinetics is a special case of Equation (4).

As specific example, consider the well known Michaelis-Menten enzyme mechanism:

in which E is an enzyme involved in converting substrate A into product B. The steady-state flux through this mechanism is

where *E _{o}* is the total enzyme concentration,

*a*=[A],

*b*=[B],

*k*=

_{f}*E*

_{o}k_{+1}

*k*

_{+2}/(

*k*

_{−1}+

*k*

_{+2}),

*k*=

_{r}*E*

_{o}k_{−1}

*k*

_{−2}/(

*k*

_{−1}+

*k*

_{+2}),

*K*=(

_{a}*k*

_{−1}+k

_{+2})/

*k*

_{+1}, and

*K*=(

_{b}*k*

_{−1}+

*k*

_{+2})/

*k*

_{−2}. Identifying

*J*

^{+}as the positive term and

*J*

^{−}as the negative term in Equation (9), it is straightforward to verify that

*J*

^{+}and

*J*

^{−}satisfy Equation (4), where Δ

*G*=−

^{o}*R*Tln(

*k*

_{+1}

*k*

_{+2}/

*k*

_{−1}

*k*

_{−2}). In application in biochemical enzyme kinetics, it is sometimes assumed that

*k*

_{−2}[B]=0, resulting in the well known Michaelis-Menten equation for an irreversible reaction (see below).

#### Crooks Fluctuation Theorem

Again, we consider a system made up of molecules that can transition between two states: AB. The system is sustained in a steady-state with constant numbers of A and B; therefore, each transition brings the system back to its starting state in a cyclic fashion. If Γ^{+} is the mean forward transition rate (number of transitions per unit time) for which the system is driven in the forward direction, then the probability of *n* forward transitions in a finite time period τ is given by the Poisson distribution: . Likewise, the probability of *m* reverse transitions is , where Γ^{–} is the reverse transition rate. Hence, the probability of net forward turnover *l*=*m* − *n* is given by

and the probability of *l* net reverse turnovers is

Associated with net *l* forward turnover cycles is the isothermal heat dissipation which is equal to the entropy production (e.p.) of −(*l*Δ*G*); the net *l* reverse turnovers have an e.p. of +(*l*Δ*G*). Therefore, the ratio of the probability of e.p.=σ to the probability of e.p.=−σ, within a finite time interval, is

Since the chemical flux is proportional to the number of transitions per unit time, Γ^{+}/Γ^{−}=*J*^{+}/*J*^{−}. Connecting this result with Equation (4), we have

which is known as the Crooks fluctuation theorem [6].

#### Ussing Flux Ratio

When a charged species is transported across a biological membrane, the ionic flux is influenced by any electrostatic potential difference that exists across the membrane. Using the convention that the electrostatic potential across a cell is measured as the outside potential subtracted from inside potential, Equation (4) is expressed

for passive transport of a single ion across a cell membrane. Here, *c _{i}* and

*c*in Equation (14) denote the concentrations of the ion on the inside and outside of the cell, respectively;

_{o}*z*is the valence number of the ion;

*F*is Faraday's constant; ΔΨ is the electrostatic potential (defined as inside potential minus outside potential); and

*J*and

^{in}*J*are in inward and outward one-way fluxes. The flux ratio in form of Equation (14) was introduced in 1949 by Ussing [13] for the case of passive transport of single ions and is known as the Ussing flux ratio. Based on the assumption that

^{out}*J*is independent of

^{out}*c*and that

_{o}*J*is independent of

^{in}*c*, Hodgkin and Huxley derived the same expression in 1952 [14].

_{i}The current work shows that the theory of Ussing and Hodgkin and Huxley is a special case of Equation (4). In addition to single-ion channel fluxes for which the Ussing flux ratio has been developed and applied, the flux ratio of Equation (4) applies to all active and passive transport processes as well as multiple-ion transporters.

### Additional Consequences

#### Net Flux for Nearly Irreversible Reactions is Proportional to Reverse Flux

We can study nearly irreversible systems based on Equation (4). The net flux through a chemical process is *J*=*J*^{+}−*J*^{−}; thus, *e*^{−ΔG/RT}=*J*/*J*^{−}+1, which leads to the approximation

for nearly irreversible reactions (*J**J*^{−1}). Thus the net flux through an enzyme in a reaction operating far from equilibrium is proportional to the reverse flux.

For the quasi-steady approximation of Equation (9) the reverse flux is *J*^{−}=*k _{r}b*/(1+

*a*/

*K*+

_{a}*b*/

*K*); thus for a nearly irreversible reaction

_{b}which is the expression that we would arrive at by setting *k _{r}*=0 in Equation (9). Note that the usual irreversible Michaelis-Menten equation derives from the assumption that

*k*

_{−2}=0, which results in

This analysis illustrates that the assumption *k*_{−2}=0 is a special case of the irreversible single-substrate enzyme. Equation (16) is the general approximation for the case of |Δ*G*/*R*T|1, where *k*_{−2} may be finite.

#### Net Flux for Highly Reversible Reactions is Proportional to Reverse Flux

Near equilibrium (for |Δ*G*|*R*T) the flux can be approximated as linearly proportional to the thermodynamic driving force: *J*=−*X*Δ*G*, where *X* is the Onsager coefficient [15], [16]. When the near-equilibrium approximation |Δ*G|**R*T holds, the flux ratio *J*^{+}/*J*^{−} is approximately equal to 1. In this case Equation (4) is approximated

From this expression, we have

Therefore for highly reversible systems, the net flux is proportional to the reverse flux times the thermodynamic driving force; the Onsager coefficient is equal to *J*^{−}/*R*T.

#### Application to Transport Processes

In addition to application to chemical reactions, Equation (4) is directly applied to transport processes. For example, one-dimensional transport of particles in a complex medium is governed by a Fokker-Planck equation with spatially dependent diffusion coefficient *D*(*x*) and potential function *u*(*x*) [17]:

over the domain 0≤*x*≤1. The steady-state transport flux predicted by this equation is [17]

where *c*_{0} and c_{1} are the concentrations of the two reservoirs at *x*=0 and *x*=1. Recognizing that Δ*G*=−{*u*(1)−*u*(0)+*R*Tln(*c*_{1}/*c*_{0})} for this system, we have Equation (4).

#### Exchange of Isotope Labels

A variety of isotope labeling methods are used to determine in vivo metabolic fluxes. In some cases, it is possible to estimate not only the net flux of a given reaction, but also the forward and reverse rate at which an isotope label exchanges between species involved in a chemical reaction [18]. Consider as examples the enzyme-mediated catalysis schemes for the reaction AB illustrated in Figure 1.

For the reversible Michaelis-Menten example of the left panel, which is described by Equations (8) and (9), the exchange flux ratio—the rate at which a label on A molecules is transferred to B molecules divided by the rate at which a label on B molecules is transferred to A molecules is given by Equation (4),

where Δ*G _{AB}* and

*K*are the Gibbs free energy and equilibrium constant for the reaction.

_{eq}For the mechanism illustrated in the right panel of the figure, the exchange flux ratio takes a slightly different form. This enzyme mechanism has the following elementary steps:

where *K _{eq}*=(

*k*

_{+1}·

*k*

_{+2}·

*k*

_{+3})/ (

*k*

_{−1}·

*k*

_{−2}·

*k*

_{−3}). The overall flux ratio for the enzyme cycle E

_{1}+AE

_{1}+B, has the same form as Equation (22)

The exchange flux ratio follows from applying Equation (4) or (6) to the reaction E_{1}+AE_{3}+B:

where the apparent equilibrium constant for the reaction E_{1}+AE_{3}+B is *K*=*K _{eq}*

*k*

_{−3}/

*k*

_{+3}. The inequality in Equation (25) is for the case that the net flux is positive and therefore

*k*

_{−3}[E

_{1}]≤

*k*

_{+3}[E

_{3}].

## Discussion

In summary, we have demonstrated that Equation (4) is a fundamental condition that is satisfied by any chemical process operating in a steady state in dilute solution. This equation is a generalization of the well known equilibrium conditions Δ*G*=0 and *J*^{−}=*J*^{+} to the case of a chemical process occurring in a nonequilibrium steady state, such as a chemical reaction in an open system [19], [20]. It provides a novel equivalent definition for the reaction free energy, or thermodynamic driving force. Based on this relationship, related theories of Ussing [13] and Hodgkin and Huxley [14] for ionic transport across membranes, Hill [2]–[5], [10] for enzyme cycle kinetics, and Crooks [6] for entropy production and work done by microscopically reversible systems, are united in a common framework.

## Acknowledgments

We thank J.B. Bassingthwaighte, A. Cornish-Bowden, and M. E. Fisher for valuable comments on the manuscript. Discussions regarding the Ussing flux ratio with James Sneyd were of great value, as were discussions with Wolfgang Wierchert on labeled isotope exchange.

## Footnotes

**Competing Interests: **The authors have declared that no competing interests exist.

**Funding: **This work was supported by NIH grant GM0680610.

## References

**Public Library of Science**

## Formats:

- Article |
- PubReader |
- ePub (beta) |
- PDF (110K)

- Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.[Biophys Chem. 2005]
*Qian H, Beard DA.**Biophys Chem. 2005 Apr 22; 114(2-3):213-20. Epub 2004 Dec 22.* - Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.[J Phys Chem B. 2006]
*Qian H.**J Phys Chem B. 2006 Aug 10; 110(31):15063-74.* - Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion.[Phys Chem Chem Phys. 2010]
*Bedeaux D, Pagonabarraga I, Ortiz de Zárate JM, Sengers JV, Kjelstrup S.**Phys Chem Chem Phys. 2010 Oct 21; 12(39):12780-93. Epub 2010 Aug 27.* - Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.[Naturwissenschaften. 2009]
*Kleidon A.**Naturwissenschaften. 2009 Jun; 96(6):653-77. Epub 2009 Feb 26.* - Equilibrium and steady state thermodynamics of active transport systems studied on simple models simulating Ca2+ transport through sarcoplasmic reticulum membranes.[J Theor Biol. 1986]
*Alonso GL, Hecht JP.**J Theor Biol. 1986 May 21; 120(2):191-203.*

- Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism[PLoS Computational Biology. ]
*Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R.**PLoS Computational Biology. 10(2)e1003483* - Glycolytic strategy as a tradeoff between energy yield and protein cost[Proceedings of the National Academy of Scie...]
*Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R.**Proceedings of the National Academy of Sciences of the United States of America. 2013 Jun 11; 110(24)10039-10044* - Reaction Networks as Systems for Resource Allocation: A Variational Principle for Their Non-Equilibrium Steady States[PLoS ONE. ]
*De Martino A, De Martino D, Mulet R, Uguzzoni G.**PLoS ONE. 7(7)e39849* - Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase[BMC Biochemistry. ]
*Qi F, Pradhan RK, Dash RK, Beard DA.**BMC Biochemistry. 1253* - Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release[Molecular Systems Biology. ]
*Huber HJ, Dussmann H, Kilbride SM, Rehm M, Prehn JH.**Molecular Systems Biology. 7470*

- PubMedPubMedPubMed citations for these articles

- Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversibl...Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible ProcessesPLoS ONE. 2007; 2(1)PMC

Your browsing activity is empty.

Activity recording is turned off.

See more...