Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. Dec 1997; 65(12): 4972–4977.
PMCID: PMC175717

Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei.


Burkholderia pseudomallei is the causative agent of melioidosis, a disease increasingly recognized as an important cause of morbidity and mortality in many regions of the world. B. pseudomallei is a facultative intracellular pathogen capable of invading eukaryotic cells. We used Tn5-OT182 mutagenesis to generate mutants deficient in the ability to invade a human type II pneumocyte cell line (A549 cells). One of these mutants, AJ1D8, exhibited approximately 10% of the ability of the parental strain, 1026b, to invade A549 cells. There was no difference in the abilities of 1026b and AJ1D8 to resist killing by RAW macrophages or the human defensin HNP-1. The nucleotide sequence flanking the Tn5-OT182 integration in AJ1D8 was determined, and two open reading frames were identified. The predicted proteins shared considerable homology with two-component regulatory systems involved in the regulation of heavy-metal resistance in other organisms. AJ1D8 was 16-fold more sensitive to Cd2+ and twofold more sensitive to Zn2+ than was 1026b but was not sensitive to any of the other heavy metals examined. The B. pseudomallei two-component regulatory system, termed irlRS, complemented the invasion-deficient and heavy-metal-sensitive phenotype of AJ1D8 in trans. There was no significant difference between the virulence of AJ1D8 and that of 1026b in infant diabetic rats and Syrian hamsters, suggesting that the irlRS locus is probably not a virulence determinant in these animal models of acute B. pseudomallei infection.

Full Text

The Full Text of this article is available as a PDF (243K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ashdown LR, Koehler JM. Production of hemolysin and other extracellular enzymes by clinical isolates of Pseudomonas pseudomallei. J Clin Microbiol. 1990 Oct;28(10):2331–2334. [PMC free article] [PubMed]
  • Bowe F, Heffron F. Isolation of Salmonella mutants defective for intracellular survival. Methods Enzymol. 1994;236:509–526. [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Brett PJ, Deshazer D, Woods DE. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect. 1997 Apr;118(2):137–148. [PMC free article] [PubMed]
  • Brett PJ, Mah DC, Woods DE. Isolation and characterization of Pseudomonas pseudomallei flagellin proteins. Infect Immun. 1994 May;62(5):1914–1919. [PMC free article] [PubMed]
  • Brett PJ, Woods DE. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect Immun. 1996 Jul;64(7):2824–2828. [PMC free article] [PubMed]
  • Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol. 1995 Sep;17(6):1153–1166. [PubMed]
  • Chaowagul W, White NJ, Dance DA, Wattanagoon Y, Naigowit P, Davis TM, Looareesuwan S, Pitakwatchara N. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. 1989 May;159(5):890–899. [PubMed]
  • Dance DA. Pseudomonas pseudomallei: danger in the paddy fields. Trans R Soc Trop Med Hyg. 1991 Jan-Feb;85(1):1–3. [PubMed]
  • Dance DA. Melioidosis: the tip of the iceberg? Clin Microbiol Rev. 1991 Jan;4(1):52–60. [PMC free article] [PubMed]
  • DeShazer D, Brett PJ, Carlyon R, Woods DE. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol. 1997 Apr;179(7):2116–2125. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Egan AM, Gordon DL. Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect Immun. 1996 Dec;64(12):4952–4959. [PMC free article] [PubMed]
  • Eickhoff TC, Bennett JV, Hayes PS, Feeley J. Pseudomonas pseudomallei: susceptibility to chemotherapeutic agents. J Infect Dis. 1970 Feb;121(2):95–102. [PubMed]
  • Harwig SS, Ganz T, Lehrer RI. Neutrophil defensins: purification, characterization, and antimicrobial testing. Methods Enzymol. 1994;236:160–172. [PubMed]
  • Howe C, Sampath A, Spotnitz M. The pseudomallei group: a review. J Infect Dis. 1971 Dec;124(6):598–606. [PubMed]
  • Ismail G, Razak N, Mohamed R, Embi N, Omar O. Resistance of Pseudomonas pseudomallei to normal human serum bactericidal action. Microbiol Immunol. 1988;32(7):645–652. [PubMed]
  • Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996 Mar;64(3):782–790. [PMC free article] [PubMed]
  • Koponen MA, Zlock D, Palmer DL, Merlin TL. Melioidosis. Forgotten, but not gone! Arch Intern Med. 1991 Mar;151(3):605–608. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976 Jan 15;17(1):62–70. [PubMed]
  • Mackowiak PA, Smith JW. Septicemic melioidosis. Occurrence following acute influenza A six years after exposure in Vietnam. JAMA. 1978 Aug 25;240(8):764–766. [PubMed]
  • Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods Enzymol. 1996;266:131–141. [PubMed]
  • Mays EE, Ricketts EA. Melioidosis: recrudescence associated with bronchogenic carcinoma twenty-six years following initial geographic exposure. Chest. 1975 Aug;68(2):261–263. [PubMed]
  • Merriman TR, Lamont IL. Construction and use of a self-cloning promoter probe vector for gram-negative bacteria. Gene. 1993 Apr 15;126(1):17–23. [PubMed]
  • Mills SD, Jasalavich CA, Cooksey DA. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol. 1993 Mar;175(6):1656–1664. [PMC free article] [PubMed]
  • Morrison RE, Lamb AS, Craig DB, Johnson WM. Melioidosis: a reminder. Am J Med. 1988 May;84(5):965–967. [PubMed]
  • Nies DH. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol. 1995 May;177(10):2707–2712. [PMC free article] [PubMed]
  • Pruksachartvuthi S, Aswapokee N, Thankerngpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol. 1990 Feb;31(2):109–114. [PubMed]
  • Sexton MM, Jones AL, Chaowagul W, Woods DE. Purification and characterization of a protease from Pseudomonas pseudomallei. Can J Microbiol. 1994 Nov;40(11):903–910. [PubMed]
  • van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies DH. Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol. 1997 Feb;23(3):493–503. [PubMed]
  • Woods DE, Jones AL, Hill PJ. Interaction of insulin with Pseudomonas pseudomallei. Infect Immun. 1993 Oct;61(10):4045–4050. [PMC free article] [PubMed]
  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. [PubMed]
  • Yang H, Kooi CD, Sokol PA. Ability of Pseudomonas pseudomallei malleobactin to acquire transferrin-bound, lactoferrin-bound, and cell-derived iron. Infect Immun. 1993 Feb;61(2):656–662. [PMC free article] [PubMed]
  • Yang HM, Chaowagul W, Sokol PA. Siderophore production by Pseudomonas pseudomallei. Infect Immun. 1991 Mar;59(3):776–780. [PMC free article] [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...