• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of annrheumdAnnals of the Rheumatic DiseasesVisit this articleSubmit a manuscriptReceive email alertsContact usBMJ
Ann Rheum Dis. May 1999; 58(5): 309–314.
PMCID: PMC1752888

Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia

Abstract

OBJECTIVE—To quantify the percentage of apoptotic peripheral blood neutrophils in systemic lupus erythematosus (SLE) and to determine the relations with disease activity and neutropenia.
METHODS—Neutrophil apoptosis in SLE patients (n =50) was assessed by flow cytometry using annexin V binding and fluorescent labelled anti-fas. Rheumatoid arthritis (RA, n =20) and inflammatory bowel disease patients (IBD, n =20) were studied as disease controls.
RESULTS—The percentage of apoptotic neutrophils, determined by annexin V binding, was increased in peripheral blood of SLE patients (median = 3.25%) compared with normal healthy donors (n =20, median = 1.20%) and disease controls (RA: median = 1.15%) (IBD: median = 1.15%). SLE neutrophil apoptosis correlated positively with lupus disease activity measured by SLAM score. SLE patients with increased antibodies to dsDNA (>10 mg/ml) had increased apoptotic neutrophils. Eight of 14 neutropenic SLE patients had increased apoptotic neutrophils. Increased neutrophil fas expression compared with normal controls was observed in SLE, RA, and IBD.
CONCLUSION—Neutrophil fas expression is increased non-specifically in inflammatory disease. Increased circulating apoptotic neutrophils in SLE correlate positively with disease activity (SLAM) and may contribute to autoantigen excess including dsDNA.

Full Text

The Full Text of this article is available as a PDF (171K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Herrmann M, Voll RE, Zoller OM, Hagenhofer M, Ponner BB, Kalden JR. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 1998 Jul;41(7):1241–1250. [PubMed]
  • Herrmann M, Zoller OM, Hagenhofer M, Voll R, Kalden JR. What triggers anti-dsDNA antibodies? Mol Biol Rep. 1996;23(3-4):265–267. [PubMed]
  • Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M. High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus. 1998;7(2):113–118. [PubMed]
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. [PMC free article] [PubMed]
  • Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994 Apr 1;179(4):1317–1330. [PMC free article] [PubMed]
  • Utz PJ, Anderson P. Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum. 1998 Jul;41(7):1152–1160. [PubMed]
  • Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994 Sep 1;84(5):1415–1420. [PubMed]
  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed]
  • van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry. 1996 Jun 1;24(2):131–139. [PubMed]
  • Liles WC, Klebanoff SJ. Regulation of apoptosis in neutrophils--Fas track to death? J Immunol. 1995 Oct 1;155(7):3289–3291. [PubMed]
  • Martin SJ, Finucane DM, Amarante-Mendes GP, O'Brien GA, Green DR. Phosphatidylserine externalization during CD95-induced apoptosis of cells and cytoplasts requires ICE/CED-3 protease activity. J Biol Chem. 1996 Nov 15;271(46):28753–28756. [PubMed]
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992 Mar 26;356(6367):314–317. [PubMed]
  • Mysler E, Bini P, Drappa J, Ramos P, Friedman SM, Krammer PH, Elkon KB. The apoptosis-1/Fas protein in human systemic lupus erythematosus. J Clin Invest. 1994 Mar;93(3):1029–1034. [PMC free article] [PubMed]
  • Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med. 1996 Nov 28;335(22):1643–1649. [PubMed]
  • Lorenz HM, Grünke M, Hieronymus T, Herrmann M, Kühnel A, Manger B, Kalden JR. In vitro apoptosis and expression of apoptosis-related molecules in lymphocytes from patients with systemic lupus erythematosus and other autoimmune diseases. Arthritis Rheum. 1997 Feb;40(2):306–317. [PubMed]
  • Keeling DM, Isenberg DA. Haematological manifestations of systemic lupus erythematosus. Blood Rev. 1993 Dec;7(4):199–207. [PubMed]
  • Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271–1277. [PubMed]
  • Liang MH, Socher SA, Larson MG, Schur PH. Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus. Arthritis Rheum. 1989 Sep;32(9):1107–1118. [PubMed]
  • English D, Andersen BR. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974 Aug;5(3):249–252. [PubMed]
  • Emlen W, Niebur J, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol. 1994 Apr 1;152(7):3685–3692. [PubMed]
  • Richardson BC, Yung RL, Johnson KJ, Rowse PE, Lalwani ND. Monocyte apoptosis in patients with active lupus. Arthritis Rheum. 1996 Aug;39(8):1432–1434. [PubMed]
  • Bootsma H, Spronk PE, Ter Borg EJ, Hummel EJ, de Boer G, Limburg PC, Kallenberg CG. The predictive value of fluctuations in IgM and IgG class anti-dsDNA antibodies for relapses in systemic lupus erythematosus. A prospective long-term observation. Ann Rheum Dis. 1997 Nov;56(11):661–666. [PMC free article] [PubMed]
  • Savill J, Haslett C. Granulocyte clearance by apoptosis in the resolution of inflammation. Semin Cell Biol. 1995 Dec;6(6):385–393. [PubMed]
  • Bell AL, Magill MK, McKane R, Irvine AE. Human blood and synovial fluid neutrophils cultured in vitro undergo programmed cell death which is promoted by the addition of synovial fluid. Ann Rheum Dis. 1995 Nov;54(11):910–915. [PMC free article] [PubMed]
  • Liles WC, Dale DC, Klebanoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood. 1995 Oct 15;86(8):3181–3188. [PubMed]
  • Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol. 1995 May 1;154(9):4719–4725. [PubMed]
  • Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed]
  • Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A, Seki H, Taniguchi N. Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood. 1994 Aug 15;84(4):1201–1208. [PubMed]
  • Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med. 1989 May 1;169(5):1747–1756. [PMC free article] [PubMed]
  • Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. [PubMed]
  • Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PJ, Mountz JD. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science. 1994 Mar 25;263(5154):1759–1762. [PubMed]
  • Manfredi AA, Rovere P, Galati G, Heltai S, Bozzolo E, Soldini L, Davoust J, Balestrieri G, Tincani A, Sabbadini MG. Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arthritis Rheum. 1998 Feb;41(2):205–214. [PubMed]
  • Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. [PMC free article] [PubMed]
  • Ren Y, Silverstein RL, Allen J, Savill J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med. 1995 May 1;181(5):1857–1862. [PMC free article] [PubMed]
  • Hart SP, Dougherty GJ, Haslett C, Dransfield I. CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J Immunol. 1997 Jul 15;159(2):919–925. [PubMed]
  • Bell DA, Morrison B. The spontaneous apoptotic cell death of normal human lymphocytes in vitro: the release of, and immunoproliferative response to, nucleosomes in vitro. Clin Immunol Immunopathol. 1991 Jul;60(1):13–26. [PubMed]
  • Euler HH, Harten P, Zeuner RA, Schwab UM. Recombinant human granulocyte colony stimulating factor in patients with systemic lupus erythematosus associated neutropenia and refractory infections. J Rheumatol. 1997 Nov;24(11):2153–2157. [PubMed]
  • Rosenthal NS, Farhi DC. Bone marrow findings in connective tissue disease. Am J Clin Pathol. 1989 Nov;92(5):650–654. [PubMed]
  • Minchinton RM, Waters AH. The occurrence and significance of neutrophil antibodies. Br J Haematol. 1984 Apr;56(4):521–528. [PubMed]
  • Mempel K, Pietsch T, Menzel T, Zeidler C, Welte K. Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood. 1991 May 1;77(9):1919–1922. [PubMed]
  • Brach MA, deVos S, Gruss HJ, Herrmann F. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood. 1992 Dec 1;80(11):2920–2924. [PubMed]
  • Sallerfors B. Endogenous production and peripheral blood levels of granulocyte-macrophage (GM-) and granulocyte (G-) colony-stimulating factors. Leuk Lymphoma. 1994 Apr;13(3-4):235–247. [PubMed]
  • Aringer M, Graninger WB, Smolen JS, Kiener HP, Steiner CW, Trautinger F, Knobler R. Photopheresis treatment enhances CD95 (fas) expression in circulating lymphocytes of patients with systemic sclerosis and induces apoptosis. Br J Rheumatol. 1997 Dec;36(12):1276–1282. [PubMed]
  • Graninger WB, Smolen JS. Should the clinician have interest in the deregulation of apoptosis in autoimmunity? Br J Rheumatol. 1997 Dec;36(12):1244–1246. [PubMed]

Figures and Tables

Figure 1
Flow cytometric histograms showing: (A) separated neutrophils from an SLE patient defined by forward angle (FS) and side scatter (SSC) light properties. (B) CD15 positivity (96%) (shaded area) of the gated neutrophil population and isotype control profile ...
Figure 2
Percentage annexin V positive neutrophils in normal controls, SLE patients, RA patients and IBD patients. Each point represents one patient, and the median for each group is shown.
Figure 3
Percentage neutrophil fas expression in normal controls, SLE patients, RA patients, and IBD patients. Each point represents an individual patient and the median for each group is shown.
Figure 4
Scatter plot demonstrating positive correlation between percentage annexin V positive neutrophils and SLAM (r =0.50, p=0.001). Each point represents an individual SLE patient.
Figure 5
Percentage annexin V expression in SLE patients stratified according to the concentration of antibodies to double stranded DNA (mg/ml). The 5-10 group includes concentrations greater than 5.0 and less than or equal to 10.0. Each point ...

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Group

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...