• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. Jan 1996; 64(1): 319–325.
PMCID: PMC173762

Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction.

Abstract

Mycobacterium avium is a facultative intracellular pathogen that can survive and replicate within macrophages. We tested the hypotheses that survival mechanisms may include alteration of phagosomal pH or inhibition of phagosome-lysosome fusion. M. avium was surface labeled with N-hydroxysuccinimidyl esters of carboxyfluorescein (CF) and rhodamine (Rho) to enable measurement of the pH of individual M. avium-containing phagosomes and the interactions of bacterium-containing phagosomes with labeled secondary lysosomes. CF fluorescence is pH sensitive, whereas Rho is pH insensitive; pH can be calculated from their fluorescence ratios. Surface labeling of M. avium did not affect viability in broth cultures or within J774, a murine macrophage-like cell line. By fluorescence spectroscopy, live M. avium was exposed to an environmental pH of approximately 5.7 at 6 h after phagocytosis, whereas similarly labeled Salmonella typhimurium, zymosan A, or heat-killed M. avium encountered an environmental pH of < 5.0. Video fluorescence and laser scanning confocal microscopy gave consistent pH results and demonstrated the heterogeneity of intracellular fate early in infection. pH became more homogeneous 6 h after infection. M. avium cells were coated with immunoglobulin G (IgG) or opsonized to investigate whether phagocytosis by the corresponding receptors would alter intracellular fate. Opsonized, unopsonized, and IgG-coated M. avium cells entered compartments of similar pH. Finally, the spatial distribution of intracellular bacteria and secondary lysosomes was compared. Only 18% of live fluorescent M. avium cells colocalized with fluorescent lysosomes, while 98% of heat-killed bacteria colocalized. Thus, both inhibition of phagosome-lysosome fusion and alteration of phagosomal pH may contribute to the intracellular survival of M. avium.

Full Text

The Full Text of this article is available as a PDF (314K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Alpuche Aranda CM, Swanson JA, Loomis WP, Miller SI. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10079–10083. [PMC free article] [PubMed]
  • Armstrong JA, Hart PD. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975 Jul 1;142(1):1–16. [PMC free article] [PubMed]
  • Bermudez LE, Young LS, Enkel H. Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect Immun. 1991 May;59(5):1697–1702. [PMC free article] [PubMed]
  • CHAPMAN JS, BERNARD JS. The tolerances of unclassified mycobacteria. I. Limits of pH tolerance. Am Rev Respir Dis. 1962 Oct;86:582–583. [PubMed]
  • Chin DJ, Straubinger RM, Acton S, Näthke I, Brodsky FM. 100-kDa polypeptides in peripheral clathrin-coated vesicles are required for receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9289–9293. [PMC free article] [PubMed]
  • Crowle AJ, Dahl R, Ross E, May MH. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun. 1991 May;59(5):1823–1831. [PMC free article] [PubMed]
  • Ellner JJ, Goldberger MJ, Parenti DM. Mycobacterium avium infection and AIDS: a therapeutic dilemma in rapid evolution. J Infect Dis. 1991 Jun;163(6):1326–1335. [PubMed]
  • Falkow S, Isberg RR, Portnoy DA. The interaction of bacteria with mammalian cells. Annu Rev Cell Biol. 1992;8:333–363. [PubMed]
  • Horwitz MA, Maxfield FR. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol. 1984 Dec;99(6):1936–1943. [PMC free article] [PubMed]
  • Joiner KA, Fuhrman SA, Miettinen HM, Kasper LH, Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science. 1990 Aug 10;249(4969):641–646. [PubMed]
  • Kielian MC, Cohn ZA. Intralysosomal accumulation of polyanions. II. Polyanion internalization and its influence on lysosomal pH and membrane fluidity. J Cell Biol. 1982 Jun;93(3):875–882. [PMC free article] [PubMed]
  • Maxfield FR. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. [PMC free article] [PubMed]
  • Maxfield FR. Measurement of vacuolar pH and cytoplasmic calcium in living cells using fluorescence microscopy. Methods Enzymol. 1989;173:745–771. [PubMed]
  • Murphy RF, Powers S, Cantor CR. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol. 1984 May;98(5):1757–1762. [PMC free article] [PubMed]
  • Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. [PMC free article] [PubMed]
  • Sibley LD, Weidner E, Krahenbuhl JL. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature. 315(6018):416–419. [PubMed]
  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994 Feb 4;263(5147):678–681. [PubMed]
  • Young LS. Mycobacterium avium complex infection. J Infect Dis. 1988 May;157(5):863–867. [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...