• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of iaiPermissionsJournals.ASM.orgJournalIAI ArticleJournal InfoAuthorsReviewers
Infect Immun. May 1995; 63(5): 1710–1717.
PMCID: PMC173214

Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis.

Abstract

A novel immunogenic antigen, the 6-kDa early secretory antigenic target (ESAT-6), from short-term culture filtrates of Mycobacterium tuberculosis was purified by hydrophobic interaction chromatography and anion-exchange chromatography by use of fast protein liquid chromatography. The antigen focused at two different pIs of 4.0 and 4.5 during isoelectric focusing, and each of these components separated into three spots ranging from 4 to 6 kDa during two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent differences in molecular masses or pIs of these isoforms were not due to posttranslational glycosylation. The molecular weight of the purified native protein was determined by applying gel filtration and nondenaturing polyacrylamide gel electrophoresis and found to be 24 kDa. ESAT-6 is recognized by the murine monoclonal antibody HYB 76-8, which was used to screen a recombinant lambda gt11 M. tuberculosis DNA library. A phage expressing a gene product recognized by HYB 76-8 was isolated, and a 1.7-kbp fragment of the mycobacterial DNA insert was sequenced. The structural gene of ESAT-6 was identified as the sequence encoding a polypeptide of 95 amino acids. The N terminus of the deduced sequence could be aligned with the 10 amino-terminal amino acids derived from sequence analyses of the native protein. N-terminal sequence analysis showed that the purified antigen was essentially free from contaminants, and the amino acid analysis of the antigen was in good agreement with the DNA sequence-deduced amino acid composition. Thus, the heterogeneities observed in the pI and molecular weight of the purified antigen do not derive from contaminating proteins but are most likely due to heterogeneity of the antigen itself. Native and recombinant ESAT-6 are immunologically active in that both elicited a high release of gamma interferon from T cells isolated from memory-immune mice challenged with M. tuberculosis. Analyses of subcellular fractions of M. tuberculosis showed the presence of ESAT-6 in cytosol- and cell wall-containing fractions. Interspecies analyses showed the presence of ESAT-6 in filtrates from M. tuberculosis complex species. Among filtrates from mycobacteria not belonging to the M. tuberculosis complex, reactivity was observed in Mycobacterium kansasii, Mycobacterium szulgai, and Mycobacterium marinum.

Full Text

The Full Text of this article is available as a PDF (414K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Andersen AB, Andersen P, Ljungqvist L. Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis. Infect Immun. 1992 Jun;60(6):2317–2323. [PMC free article] [PubMed]
  • Andersen AB, Hansen EB. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight protein of Mycobacterium tuberculosis. Infect Immun. 1989 Aug;57(8):2481–2488. [PMC free article] [PubMed]
  • Andersen AB, Ljungqvist L, Hasløv K, Bentzon MW. MPB 64 possesses 'tuberculosis-complex'-specific B- and T-cell epitopes. Scand J Immunol. 1991 Sep;34(3):365–372. [PubMed]
  • Andersen AB, Ljungqvist L, Olsen M. Evidence that protein antigen b of Mycobacterium tuberculosis is involved in phosphate metabolism. J Gen Microbiol. 1990 Mar;136(3):477–480. [PubMed]
  • Andersen AB, Worsaae A, Chaparas SD. Isolation and characterization of recombinant lambda gt11 bacteriophages expressing eight different mycobacterial antigens of potential immunological relevance. Infect Immun. 1988 May;56(5):1344–1351. [PMC free article] [PubMed]
  • Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun. 1994 Jun;62(6):2536–2544. [PMC free article] [PubMed]
  • Andersen P, Askgaard D, Gottschau A, Bennedsen J, Nagai S, Heron I. Identification of immunodominant antigens during infection with Mycobacterium tuberculosis. Scand J Immunol. 1992 Dec;36(6):823–831. [PubMed]
  • Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect Immun. 1991 Jun;59(6):1905–1910. [PMC free article] [PubMed]
  • Andersen P, Heron I. Specificity of a protective memory immune response against Mycobacterium tuberculosis. Infect Immun. 1993 Mar;61(3):844–851. [PMC free article] [PubMed]
  • Baird PN, Hall LM, Coates AR. Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. J Gen Microbiol. 1989 Apr;135(4):931–939. [PubMed]
  • Barkholt V, Jensen AL. Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem. 1989 Mar;177(2):318–322. [PubMed]
  • Borremans M, de Wit L, Volckaert G, Ooms J, de Bruyn J, Huygen K, van Vooren JP, Stelandre M, Verhofstadt R, Content J. Cloning, sequence determination, and expression of a 32-kilodalton-protein gene of Mycobacterium tuberculosis. Infect Immun. 1989 Oct;57(10):3123–3130. [PMC free article] [PubMed]
  • Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994 Mar 2;271(9):698–702. [PubMed]
  • Content J, de la Cuvellerie A, De Wit L, Vincent-Levy-Frébault V, Ooms J, De Bruyn J. The genes coding for the antigen 85 complexes of Mycobacterium tuberculosis and Mycobacterium bovis BCG are members of a gene family: cloning, sequence determination, and genomic organization of the gene coding for antigen 85-C of M. tuberculosis. Infect Immun. 1991 Sep;59(9):3205–3212. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Fifis T, Costopoulos C, Radford AJ, Bacic A, Wood PR. Purification and characterization of major antigens from a Mycobacterium bovis culture filtrate. Infect Immun. 1991 Mar;59(3):800–807. [PMC free article] [PubMed]
  • Fifis T, Plackett P, Corner LA, Wood PR. Purification of a major Mycobacterium bovis antigen for the diagnosis of bovine tuberculosis. Scand J Immunol. 1989 Jan;29(1):91–101. [PubMed]
  • Harboe M, Nagai S, Patarroyo ME, Torres ML, Ramirez C, Cruz N. Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG. Infect Immun. 1986 Apr;52(1):293–302. [PMC free article] [PubMed]
  • Hochstrasser DF, Harrington MG, Hochstrasser AC, Miller MJ, Merril CR. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal Biochem. 1988 Sep;173(2):424–435. [PubMed]
  • Klausen J, Magnusson M, Andersen AB, Koch C. Characterization of purified protein derivative of tuberculin by use of monoclonal antibodies: isolation of a delayed-type hypersensitivity reactive component from M. tuberculosis culture filtrate. Scand J Immunol. 1994 Sep;40(3):345–349. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Ljungqvist L, Worsaae A, Heron I. Antibody responses against Mycobacterium tuberculosis in 11 strains of inbred mice: novel monoclonal antibody specificities generated by fusions, using spleens from BALB.B10 and CBA/J mice. Infect Immun. 1988 Aug;56(8):1994–1998. [PMC free article] [PubMed]
  • Matsuo K, Yamaguchi R, Yamazaki A, Tasaka H, Yamada T. Cloning and expression of the Mycobacterium bovis BCG gene for extracellular alpha antigen. J Bacteriol. 1988 Sep;170(9):3847–3854. [PMC free article] [PubMed]
  • Nagai S, Wiker HG, Harboe M, Kinomoto M. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun. 1991 Jan;59(1):372–382. [PMC free article] [PubMed]
  • North RJ. Nature of "memory" in T-cell-mediated antibacterial immunity: anamnestic production of mediator T cells. Infect Immun. 1975 Oct;12(4):754–760. [PMC free article] [PubMed]
  • Orme IM. Induction of nonspecific acquired resistance and delayed-type hypersensitivity, but not specific acquired resistance in mice inoculated with killed mycobacterial vaccines. Infect Immun. 1988 Dec;56(12):3310–3312. [PMC free article] [PubMed]
  • Pal PG, Horwitz MA. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect Immun. 1992 Nov;60(11):4781–4792. [PMC free article] [PubMed]
  • Worsaae A, Ljungqvist L, Hasløv K, Heron I, Bennedsen J. Allergenic and blastogenic reactivity of three antigens from Mycobacterium tuberculosis in sensitized guinea pigs. Infect Immun. 1987 Dec;55(12):2922–2927. [PMC free article] [PubMed]
  • Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW. Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci U S A. 1985 May;82(9):2583–2587. [PMC free article] [PubMed]
  • Zhang Y, Lathigra R, Garbe T, Catty D, Young D. Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol Microbiol. 1991 Feb;5(2):381–391. [PubMed]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...