• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of gutGutVisit this articleSubmit a manuscriptReceive email alertsContact usBMJ
Gut. Aug 2000; 47(2): 211–214.
PMCID: PMC1728007

Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility


BACKGROUND—The vitamin D receptor (VDR) gene represents a strong positional candidate susceptibility gene for inflammatory bowel disease (IBD). The VDR gene maps to a region on chromosome 12 that has been shown to be linked to IBD by genome screening techniques. It is the cellular receptor for 1,25(OH)2 vitamin D3 (calcitriol) which has a wide range of different regulatory effects on the immune system. IBD is characterised by activation of the mucosal immune system.
AIM—To determine if polymorphisms in the VDR gene are associated with susceptibility to IBD
SUBJECTS—European Caucasoids: 158 patients with ulcerative colitis, 245 with Crohn's disease, and 164 cadaveric renal allograft donor controls.
METHOD—Single nucleotide polymorphisms (TaqI, ApaI, and FokI) in VDR were typed in patients with Crohn's disease, ulcerative colitis, and controls by polymerase chain reaction with sequence specific primers.
RESULTS—There were significantly more homozygotes for the TaqI polymorphism at codon 352 of exon 8 (genotype "tt") among patients with Crohn's disease (frequency 0.22) than patients with ulcerative colitis (0.12) or controls (0.12) (odds ratio 1.99; 95% confidence interval 1.14-3.47; p=0.017).
CONCLUSION—This study provides preliminary evidence for a genetic association between Crohn's disease susceptibility and a gene that lies within one of the candidate regions determined by linkage analysis.

Keywords: inflammatory bowel disease; genetics; candidate genes; vitamin D

Full Text

The Full Text of this article is available as a PDF (117K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, Terwilliger JD, Lathrop GM, Bell JI, Jewell DP. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet. 1996 Oct;14(2):199–202. [PubMed]
  • Curran ME, Lau KF, Hampe J, Schreiber S, Bridger S, Macpherson AJ, Cardon LR, Sakul H, Harris TJ, Stokkers P, et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology. 1998 Nov;115(5):1066–1071. [PubMed]
  • Duerr RH, Barmada MM, Zhang L, Davis S, Preston RA, Chensny LJ, Brown JL, Ehrlich GD, Weeks DE, Aston CE. Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet. 1998 Jul;63(1):95–100. [PMC free article] [PubMed]
  • Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988 May;85(10):3294–3298. [PMC free article] [PubMed]
  • Whitfield GK, Hsieh JC, Jurutka PW, Selznick SH, Haussler CA, MacDonald PN, Haussler MR. Genomic actions of 1,25-dihydroxyvitamin D3. J Nutr. 1995 Jun;125(6 Suppl):1690S–1694S. [PubMed]
  • Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983 Sep 16;221(4616):1181–1183. [PubMed]
  • Koeffler HP, Reichel H, Bishop JE, Norman AW. gamma-Interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages. Biochem Biophys Res Commun. 1985 Mar 15;127(2):596–603. [PubMed]
  • Rook GA, Steele J, Fraher L, Barker S, Karmali R, O'Riordan J, Stanford J. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology. 1986 Jan;57(1):159–163. [PMC free article] [PubMed]
  • D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest. 1998 Jan 1;101(1):252–262. [PMC free article] [PubMed]
  • Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284–287. [PubMed]
  • Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res. 1996 Dec;11(12):1850–1855. [PubMed]
  • Wood RJ, Fleet JC. The genetics of osteoporosis: vitamin D receptor polymorphisms. Annu Rev Nutr. 1998;18:233–258. [PubMed]
  • Ingles SA, Ross RK, Yu MC, Irvine RA, La Pera G, Haile RW, Coetzee GA. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst. 1997 Jan 15;89(2):166–170. [PubMed]
  • Hill AV. The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998;16:593–617. [PubMed]
  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. [PMC free article] [PubMed]
  • Lo YM, Patel P, Newton CR, Markham AF, Fleming KA, Wainscoat JS. Direct haplotype determination by double ARMS: specificity, sensitivity and genetic applications. Nucleic Acids Res. 1991 Jul 11;19(13):3561–3567. [PMC free article] [PubMed]
  • Mocharla H, Butch AW, Pappas AA, Flick JT, Weinstein RS, De Togni P, Jilka RL, Roberson PK, Parfitt AM, Manolagas SC. Quantification of vitamin D receptor mRNA by competitive polymerase chain reaction in PBMC: lack of correspondence with common allelic variants. J Bone Miner Res. 1997 May;12(5):726–733. [PubMed]
  • Verbeek W, Gombart AF, Shiohara M, Campbell M, Koeffler HP. Vitamin D receptor: no evidence for allele-specific mRNA stability in cells which are heterozygous for the Taq I restriction enzyme polymorphism. Biochem Biophys Res Commun. 1997 Sep 8;238(1):77–80. [PubMed]
  • Pallone F, Monteleone G. Interleukin 12 and Th1 responses in inflammatory bowel disease. Gut. 1998 Dec;43(6):735–736. [PMC free article] [PubMed]
  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M, Whittle HC, Hill AV. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis. 1999 Mar;179(3):721–724. [PubMed]
  • Roy S, Frodsham A, Saha B, Hazra SK, Mascie-Taylor CG, Hill AV. Association of vitamin D receptor genotype with leprosy type. J Infect Dis. 1999 Jan;179(1):187–191. [PubMed]

Articles from Gut are provided here courtesy of BMJ Group


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...