• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aacPermissionsJournals.ASM.orgJournalAAC ArticleJournal InfoAuthorsReviewers
Antimicrob Agents Chemother. May 1989; 33(5): 624–634.
PMCID: PMC172503

Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis.


Mechanisms of resistance to quinolones were characterized in Pseudomonas aeruginosa strains isolated after Tn5 insertional mutagenesis and in resistant strains that emerged during pefloxacin therapy of experimental aortic endocarditis. Quinolone resistance achieved in in vitro-selected mutants Qr-1 and Qr-2 was associated with cross-resistance to several groups of antimicrobial agents, including beta-lactams, tetracycline, and chloramphenicol. A significant reduction of norfloxacin uptake was also observed. After ether permeabilization of the cells, DNA synthesis of these two isolates was as susceptible to norfloxacin as DNA synthesis of the parent strain (PAO1). These results indicate that alteration of outer membrane permeability is the primary determinant of resistance in these isolates. This altered cell permeability was correlated with reduction of outer membrane protein G (25.5 kilodaltons) and loss of a 40-kilodalton outer membrane protein in strain Qr-1. Resistance to quinolones that emerged during experimental endocarditis therapy was associated with both modification of outer membrane permeability (decreased uptake of norfloxacin) and decreased susceptibility of DNA synthesis to norfloxacin. Resistance was limited to quinolones and chloramphenicol. For these strains, norfloxacin inhibitory doses (50%) for DNA synthesis were identical to the drug MICs, suggesting that despite the identification of a permeability change, perhaps due to changes of lipopolysaccharide, the alteration of the quinolone intracellular target(s) susceptibility constitutes the primary determinant of resistance. Also, two distinct levels of norfloxacin resistance of DNA synthesis were found in these isolates, indicating that at least two distinct alterations of the drug target(s) are possible in P. aeruginosa.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • AMES BN, DUBIN DT. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed]
  • Bayer AS, Hirano L, Yih J. Development of beta-lactam resistance and increased quinolone MICs during therapy of experimental Pseudomonas aeruginosa endocarditis. Antimicrob Agents Chemother. 1988 Feb;32(2):231–235. [PMC free article] [PubMed]
  • Bedard J, Wong S, Bryan LE. Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrob Agents Chemother. 1987 Sep;31(9):1348–1354. [PMC free article] [PubMed]
  • Benbrook DM, Miller RV. Effects of norfloxacin on DNA metabolism in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1986 Jan;29(1):1–6. [PMC free article] [PubMed]
  • Chapman JS, Georgopapadakou NH. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988 Apr;32(4):438–442. [PMC free article] [PubMed]
  • Cohen SP, Hooper DC, Wolfson JS, Souza KS, McMurry LM, Levy SB. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother. 1988 Aug;32(8):1187–1191. [PMC free article] [PubMed]
  • Conrad RS, Gilleland HE., Jr Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. J Bacteriol. 1981 Nov;148(2):487–497. [PMC free article] [PubMed]
  • Conrad RS, Wulf RG, Clay DL. Effects of carbon sources on antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1979 Jan;15(1):59–66. [PMC free article] [PubMed]
  • Darveau RP, Hancock RE. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. [PMC free article] [PubMed]
  • Drlica K, Engle EC, Manes SH. DNA gyrase on the bacterial chromosome: possibility of two levels of action. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6879–6883. [PMC free article] [PubMed]
  • FOLCH J, LEES M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed]
  • Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. [PubMed]
  • Godfrey AJ, Bryan LE. Penetration of beta-lactams through Pseudomonas aeruginosa porin channels. Antimicrob Agents Chemother. 1987 Aug;31(8):1216–1221. [PMC free article] [PubMed]
  • Godfrey AJ, Hatlelid L, Bryan LE. Correlation between lipopolysaccharide structure and permeability resistance in beta-lactam-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Aug;26(2):181–186. [PMC free article] [PubMed]
  • Haas D, Holloway BW. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Mar 30;144(3):243–251. [PubMed]
  • Hancock RE, Carey AM. Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. J Bacteriol. 1979 Dec;140(3):902–910. [PMC free article] [PubMed]
  • Hancock RE, Decad GM, Nikaido H. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01. Biochim Biophys Acta. 1979 Jul 5;554(2):323–331. [PubMed]
  • Hancock RE, Nikaido H. Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol. 1978 Oct;136(1):381–390. [PMC free article] [PubMed]
  • Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother. 1986 Mar;29(3):535–538. [PMC free article] [PubMed]
  • Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12. Antimicrob Agents Chemother. 1986 Aug;30(2):248–253. [PMC free article] [PubMed]
  • Hirai K, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1987 Apr;31(4):582–586. [PMC free article] [PubMed]
  • Hitchcock PJ, Brown TM. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. [PMC free article] [PubMed]
  • Hooper DC, Wolfson JS. Mode of action of the quinolone antimicrobial agents. Rev Infect Dis. 1988 Jan-Feb;10 (Suppl 1):S14–S21. [PubMed]
  • Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother. 1986 Apr;29(4):639–644. [PMC free article] [PubMed]
  • Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. [PubMed]
  • Kobayashi Y, Takahashi I, Nakae T. Diffusion of beta-lactam antibiotics through liposome membranes containing purified porins. Antimicrob Agents Chemother. 1982 Nov;22(5):775–780. [PMC free article] [PubMed]
  • Laemmli UK, Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. [PubMed]
  • Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Mackie EB, White LA, Brown KN, Bryan LE. Enzyme-linked immunosorbent assay compared with immunoprecipitation for serotyping Neisseria meningitidis and its use in demonstrating serotype polymorphism. J Clin Microbiol. 1981 Mar;13(3):449–455. [PMC free article] [PubMed]
  • Malouin F, Bryan LE. DNA probe technology for detection of Haemophilus influenzae. Mol Cell Probes. 1987 Sep;1(3):221–232. [PubMed]
  • Nayler JH. Resistance to beta-lactams in gram-negative bacteria: relative contributions of beta-lactamase and permeability limitations. J Antimicrob Chemother. 1987 Jun;19(6):713–732. [PubMed]
  • Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. [PMC free article] [PubMed]
  • Parr TR, Jr, Bryan LE. Mechanism of resistance of an ampicillin-resistant, beta-lactamase-negative clinical isolate of Haemophilus influenzae type b to beta-lactam antibiotics. Antimicrob Agents Chemother. 1984 Jun;25(6):747–753. [PMC free article] [PubMed]
  • Peterson AA, Hancock RE, McGroarty EJ. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol. 1985 Dec;164(3):1256–1261. [PMC free article] [PubMed]
  • Rella M, Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother. 1982 Aug;22(2):242–249. [PMC free article] [PubMed]
  • Robillard NJ, Scarpa AL. Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother. 1988 Apr;32(4):535–539. [PMC free article] [PubMed]
  • Schryvers AB, Wong SS, Bryan LE. Antigenic relationships among penicillin-binding proteins 1 from members of the families Pasteurellaceae and Enterobacteriaceae. Antimicrob Agents Chemother. 1986 Oct;30(4):559–564. [PMC free article] [PubMed]
  • Skipski VP, Peterson RF, Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J. 1964 Feb;90(2):374–378. [PMC free article] [PubMed]
  • Sokol PA. Tn5 insertion mutants of Pseudomonas aeruginosa deficient in surface expression of ferripyochelin-binding protein. J Bacteriol. 1987 Jul;169(7):3365–3368. [PMC free article] [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Wolfson JS, Hooper DC. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother. 1985 Oct;28(4):581–586. [PMC free article] [PubMed]
  • Woodruff WA, Parr TR, Jr, Hancock RE, Hanne LF, Nicas TI, Iglewski BH. Expression in Escherichia coli and function of Pseudomonas aeruginosa outer membrane porin protein F. J Bacteriol. 1986 Aug;167(2):473–479. [PMC free article] [PubMed]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...