• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of ajhgLink to Publisher's site
Am J Hum Genet. Feb 1997; 60(2): 284–295.
PMCID: PMC1712396

Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences.


Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of .005 (*1x2), .013 (*2x2), and .001 (*4x2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T1957C), *2B (additional C2558T), and *4E (additional C2938T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EM/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Agúndez JA, Ledesma MC, Ladero JM, Benítez J. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther. 1995 Mar;57(3):265–269. [PubMed]
  • Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996 Jul;278(1):441–446. [PubMed]
  • Appanna G, Tang BK, Mller R, Kalow W. A sensitive method for determination of cytochrome P4502D6 activity in vitro using bupranolol as substrate. Drug Metab Dispos. 1996 Mar;24(3):303–306. [PubMed]
  • Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet. 1995 Sep;29(3):192–209. [PubMed]
  • Brockmöller J, Roots I. Assessment of liver metabolic function. Clinical implications. Clin Pharmacokinet. 1994 Sep;27(3):216–248. [PubMed]
  • Broly F, Gaedigk A, Heim M, Eichelbaum M, Morike K, Meyer UA. Debrisoquine/sparteine hydroxylation genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol. 1991 Oct;10(8):545–558. [PubMed]
  • Chen ZR, Somogyi AA, Bochner F. Simultaneous determination of dextromethorphan and three metabolites in plasma and urine using high-performance liquid chromatography with application to their disposition in man. Ther Drug Monit. 1990 Jan;12(1):97–104. [PubMed]
  • Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjöqvist F. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther. 1995 Jul;274(1):516–520. [PubMed]
  • Daly AK, Armstrong M, Monkman SC, Idle ME, Idle JR. Genetic and metabolic criteria for the assignment of debrisoquine 4-hydroxylation (cytochrome P4502D6) phenotypes. Pharmacogenetics. 1991 Oct;1(1):33–41. [PubMed]
  • Daly AK, Brockmöller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang JD, Idle JR, Ingelman-Sundberg M, Ishizaki T, et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics. 1996 Jun;6(3):193–201. [PubMed]
  • Daly AK, Fairbrother KS, Andreassen OA, London SJ, Idle JR, Steen VM. Characterization and PCR-based detection of two different hybrid CYP2D7P/CYP2D6 alleles associated with the poor metabolizer phenotype. Pharmacogenetics. 1996 Aug;6(4):319–328. [PubMed]
  • Daly AK, Leathart JB, London SJ, Idle JR. An inactive cytochrome P450 CYP2D6 allele containing a deletion and a base substitution. Hum Genet. 1995 Mar;95(3):337–341. [PubMed]
  • Evert B, Griese EU, Eichelbaum M. Cloning and sequencing of a new non-functional CYP2D6 allele: deletion of T1795 in exon 3 generates a premature stop codon. Pharmacogenetics. 1994 Oct;4(5):271–274. [PubMed]
  • Gough AC, Miles JS, Spurr NK, Moss JE, Gaedigk A, Eichelbaum M, Wolf CR. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature. 1990 Oct 25;347(6295):773–776. [PubMed]
  • Heim M, Meyer UA. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet. 1990 Sep 1;336(8714):529–532. [PubMed]
  • Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11825–11829. [PMC free article] [PubMed]
  • Johansson I, Lundqvist E, Dahl ML, Ingelman-Sundberg M. PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics. 1996 Aug;6(4):351–355. [PubMed]
  • Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ. The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet. 1989 Dec;45(6):889–904. [PMC free article] [PubMed]
  • Lennard MS, Silas JH, Smith AJ, Tucker GT. Determination of debrisoquine and its 4-hydroxy metabolite in biological fluids by gas chromatography with flame-ionization and nitrogen-selective detection. J Chromatogr. 1977 Mar 11;133(1):161–166. [PubMed]
  • Løvlie R, Daly AK, Molven A, Idle JR, Steen VM. Ultrarapid metabolizers of debrisoquine: characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett. 1996 Aug 19;392(1):30–34. [PubMed]
  • Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. [PubMed]
  • Masimirembwa CM, Johansson I, Hasler JA, Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 CYP2D6 in Zimbabwean population. Pharmacogenetics. 1993 Dec;3(6):275–280. [PubMed]
  • Panserat S, Mura C, Gérard N, Vincent-Viry M, Galteau MM, Jacoz-Aigrain E, Krishnamoorthy R. An unequal cross-over event within the CYP2D gene cluster generates a chimeric CYP2D7/CYP2D6 gene which is associated with the poor metabolizer phenotype. Br J Clin Pharmacol. 1995 Oct;40(4):361–367. [PMC free article] [PubMed]
  • Sachse C, Brockmöller J, Bauer S, Reum T, Roots I. A rare insertion of T226 in exon 1 of CYP2D6 causes a frameshift and is associated with the poor metabolizer phenotype: CYP2D6*15. Pharmacogenetics. 1996 Jun;6(3):269–272. [PubMed]
  • Saxena R, Shaw GL, Relling MV, Frame JN, Moir DT, Evans WE, Caporaso N, Weiffenbach B. Identification of a new variant CYP2D6 allele with a single base deletion in exon 3 and its association with the poor metabolizer phenotype. Hum Mol Genet. 1994 Jun;3(6):923–926. [PubMed]
  • Schmid B, Bircher J, Preisig R, Küpfer A. Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther. 1985 Dec;38(6):618–624. [PubMed]
  • Skoda RC, Gonzalez FJ, Demierre A, Meyer UA. Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5240–5243. [PMC free article] [PubMed]
  • Steen VM, Andreassen OA, Daly AK, Tefre T, Børresen AL, Idle JR, Gulbrandsen AK. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics. 1995 Aug;5(4):215–223. [PubMed]
  • Tefre T, Daly AK, Armstrong M, Leathart JB, Idle JR, Brøgger A, Børresen AL. Genotyping of the CYP2D6 gene in Norwegian lung cancer patients and controls. Pharmacogenetics. 1994 Apr;4(2):47–57. [PubMed]
  • Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics. 1991 Oct;1(1):26–32. [PubMed]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • OMIM
    OMIM record citing PubMed
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...