• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of procbhomepageaboutsubmitalertseditorial board
Proc Biol Sci. Dec 22, 2003; 270(1533): 2543–2550.
PMCID: PMC1691542

Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid.


Almost all aphids harbour an endosymbiotic bacterium, Buchnera aphidicola, in bacteriocytes. Buchnera synthesizes essential nutrients and supports growth and reproduction of the host. Over the long history of endosymbiosis, many essential genes have been lost from the Buchnera genome, resulting in drastic genome reduction and the inability to live outside the host cells. In turn, when deprived of Buchnera, the host aphid suffers retarded growth and sterility. Buchnera and the host aphid are often referred to as highly integrated almost inseparable mutualistic partners. However, we discovered that, even after complete elimination of Buchnera, infection with a facultative endosymbiotic gamma-proteobacterium called pea aphid secondary symbiont (PASS) enabled survival and reproduction of the pea aphid. In the Buchnera-free aphid, PASS infected the cytoplasms of bacteriocytes that normally harbour Buchnera, establishing a novel endosymbiotic system. These results indicate that PASS can compensate for the essential role of Buchnera by physiologically and cytologically taking over the symbiotic niche. By contrast, PASS negatively affected the growth and reproduction of normal host aphids by suppressing the essential symbiont Buchnera. These findings illuminate complex symbiont-symbiont and host-symbiont interactions in an endosymbiotic system, and suggest a possible evolutionary route to novel obligate endosymbiosis by way of facultative endosymbiotic associations.

Full Text

The Full Text of this article is available as a PDF (576K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Chen DQ, Purcell AH. Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol. 1997 Apr;34(4):220–225. [PubMed]
  • Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37. [PubMed]
  • Dubilier N, Mülders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, Wagner M, Erséus C, Thiermann F, Krieger J, et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature. 2001 May 17;411(6835):298–302. [PubMed]
  • Fukatsu T, Ishikawa H. Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol. 1996 Apr;26(4):383–388. [PubMed]
  • Fukatsu T, Nikoh N. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl Environ Microbiol. 1998 Oct;64(10):3599–3606. [PMC free article] [PubMed]
  • Fukatsu T, Nikoh N, Kawai R, Koga R. The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: homoptera). Appl Environ Microbiol. 2000 Jul;66(7):2748–2758. [PMC free article] [PubMed]
  • Fukatsu T, Tsuchida T, Nikoh N, Koga R. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol. 2001 Mar;67(3):1284–1291. [PMC free article] [PubMed]
  • Hinde R. The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J Insect Physiol. 1971 Oct;17(10):2035–2050. [PubMed]
  • Komaki K, Ishikawa H. Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol. 1999 Jun;48(6):717–722. [PubMed]
  • Kondo Natsuko, Ijichi Nobuyuki, Shimada Masakazu, Fukatsu Takema. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol. 2002 Feb;11(2):167–180. [PubMed]
  • McGraw EA, Merritt DJ, Droller JN, O'Neill SL. Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2918–2923. [PMC free article] [PubMed]
  • Munson MA, Baumann P, Moran NA. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol Phylogenet Evol. 1992 Mar;1(1):26–30. [PubMed]
  • Oliver Kerry M, Russell Jacob A, Moran Nancy A, Hunter Martha S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1803–1807. [PMC free article] [PubMed]
  • Sandström JP, Russell JA, White JP, Moran NA. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol. 2001 Jan;10(1):217–228. [PubMed]
  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000 Sep 7;407(6800):81–86. [PubMed]
  • Tsuchida Tsutomu, Koga Ryuichi, Shibao Harunobu, Matsumoto Tadao, Fukatsu Takema. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2002 Oct;11(10):2123–2135. [PubMed]
  • Unterman BM, Baumann P, McLean DL. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J Bacteriol. 1989 Jun;171(6):2970–2974. [PMC free article] [PubMed]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...