• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of procbhomepageaboutsubmitalertseditorial board
Proc Biol Sci. Oct 7, 2002; 269(1504): 2029–2033.
PMCID: PMC1691130

Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection.

Abstract

The extreme polymorphism found at some major histocompatibility complex (MHC) loci is believed to be maintained by balancing selection caused by infectious pathogens. Experimental support for this is inconclusive. We have studied the interaction between certain MHC alleles and the bacterium Aeromonas salmonicida, which causes the severe disease furunculosis, in Atlantic salmon (Salmo salar L.). We designed full-sibling broods consisting of combinations of homozygote and heterozygote genotypes with respect to resistance or susceptibility alleles. The juveniles were experimentally infected with A. salmonicida and their individual survival was monitored. By comparing full siblings carrying different MHC genotypes the effects on survival due to other segregating genes were minimized. We show that a pathogen has the potential to cause very intense selection pressure on particular MHC alleles; the relative fitness difference between individuals carrying different MHC alleles was as high as 0.5. A co-dominant pattern of disease resistance/susceptibility was found, indicative of qualitative difference in the immune response between individuals carrying the high- and low-resistance alleles. Rather unexpectedly, survival was not higher among heterozygous individuals as compared with homozygous ones.

Full Text

The Full Text of this article is available as a PDF (97K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK. The nature of selection on the major histocompatibility complex. Crit Rev Immunol. 1997;17(2):179–224. [PubMed]
  • Bingulac-Popovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J. Mapping of mhc class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics. 1997;46(2):129–134. [PubMed]
  • Briles WE, Briles RW, Taffs RE, Stone HA. Resistance to a malignant lymphoma in chickens is mapped to subregion of major histocompatibility (B) complex. Science. 1983 Feb 25;219(4587):977–979. [PubMed]
  • Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R, Buchbinder S, Hoots K, O'Brien SJ. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science. 1999 Mar 12;283(5408):1748–1752. [PubMed]
  • Clarke B, Kirby DR. Maintenance of histocompatibility polymorphisms. Nature. 1966 Aug 27;211(5052):999–1000. [PubMed]
  • Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev. 1999 Feb;167:59–67. [PubMed]
  • Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. [PMC free article] [PubMed]
  • Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. [PubMed]
  • Langefors A, Lohm J, Von Schantz T, Grahn M. Screening of Mhc variation in Atlantic salmon (Salmo salar): a comparison of restriction fragment length polymorphism (RFLP), denaturing gradient gel electrophoresis (DGGE) and sequencing. Mol Ecol. 2000 Feb;9(2):215–219. [PubMed]
  • Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc Biol Sci. 2001 Mar 7;268(1466):479–485. [PMC free article] [PubMed]
  • Medina E, North RJ. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology. 1998 Feb;93(2):270–274. [PMC free article] [PubMed]
  • Paterson S, Wilson K, Pemberton JM. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3714–3719. [PMC free article] [PubMed]
  • Sato A, Figueroa F, Murray BW, Málaga-Trillo E, Zaleska-Rutczynska Z, Sültmann H, Toyosawa S, Wedekind C, Steck N, Klein J. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics. 2000 Feb;51(2):108–116. [PubMed]
  • Takahata N, Satta Y, Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics. 1992 Apr;130(4):925–938. [PMC free article] [PubMed]
  • Thursz MR, Thomas HC, Greenwood BM, Hill AV. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat Genet. 1997 Sep;17(1):11–12. [PubMed]
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. [PMC free article] [PubMed]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...