• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of procbhomepageaboutsubmitalertseditorial board
Proc Biol Sci. Oct 22, 1997; 264(1387): 1517–1523.
PMCID: PMC1688693

Resolution of the phylogenetic position of the Congo peafowl, Afropavo congensis: a biogeographic and evolutionary enigma.


Afropavo congensis, the Congo peafowl, has long fascinated ornithologists because of its uncertain phylogenetic position and unusual geographic distribution. While some researchers have placed Afropavo as a sister taxon to the true peafowl, Pavo species, others have suggested relationships with the guineafowl or an Old World partridge, Francolinus. These divergent opinions are due, at least in part, to (i) the unique morphological characteristics, lack of elaborate ornamentation, and monogamous mating system in Afropavo which differentiates it from Pavo; and (ii) the restricted distribution of Afropavo in Zaire, which is far removed from the Asian distribution of all other pheasant species. We obtained complete cytochrome b and partial D-loop sequences of Afropavo and compared them to Pavo, guineafowl, Francolinus and other galliform taxa. Our results strongly support a close relationship between Afropavo and Pavo, and we were able to reject alternative phylogenetic hypotheses. Molecular clock estimates of the divergence time place the separation of Afropavo and Pavo in the late Miocene. We also discuss other relatives of Afropavo and Pavo and use this information to propose hypotheses regarding the evolution of ornamentation and sexual dimorphism within this group of pheasants.

Full Text

The Full Text of this article is available as a PDF (156K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Fumihito A, Miyake T, Takada M, Ohno S, Kondo N. The genetic link between the Chinese bamboo partridge (Bambusicola thoracica) and the chicken and junglefowls of the genus Gallus. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11053–11056. [PMC free article] [PubMed]
  • Arctander P. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proc Biol Sci. 1995 Oct 23;262(1363):13–19. [PubMed]
  • Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. [PubMed]
  • Fitch WM, Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. [PubMed]
  • Helm-Bychowski KM, Wilson AC. Rates of nuclear DNA evolution in pheasant-like birds: evidence from restriction maps. Proc Natl Acad Sci U S A. 1986 Feb;83(3):688–692. [PMC free article] [PubMed]
  • Howell N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol. 1989 Aug;29(2):157–169. [PubMed]
  • Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989 Aug;29(2):170–179. [PubMed]
  • Kornegay JR, Kocher TD, Williams LA, Wilson AC. Pathways of lysozyme evolution inferred from the sequences of cytochrome b in birds. J Mol Evol. 1993 Oct;37(4):367–379. [PubMed]
  • Marshall HD, Baker AJ. Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Mol Biol Evol. 1997 Feb;14(2):173–184. [PubMed]
  • Nunn GB, Cracraft J. Phylogenetic relationships among the major lineages of the birds-of-paradise (Paradisaeidae) using mitochondrial DNA gene sequences. Mol Phylogenet Evol. 1996 Jun;5(3):445–459. [PubMed]
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. [PubMed]
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. [PubMed]
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. [PMC free article] [PubMed]
  • Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994 Sep;39(3):306–314. [PubMed]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...