• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. May 1997; 63(5): 1826–1837.
PMCID: PMC168475

Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis.

Abstract

The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during life in excess nutrients, by comparison of prototrophic wild-type strains and auxotrophic domesticated (dairy) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L. lactis subsp. cremoris laboratory strain MG1363, which was originally derived from a dairy strain. After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shock repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase were identified by a combination of Western blotting and direct N-terminal amino acid sequencing of proteins from the gels. Of 400 to 500 visible proteins, 17 were induced more than twofold during heat stress. Two classes of heat stress proteins were identified from their temporal induction pattern. The fast-induced proteins (including DnaK) showed an abruptly increased rate of synthesis during the first 10 min, declining to intermediate levels after 15 min. GroEL and GroES, which also belong to this group, maintained a high rate of synthesis after 15 min. The class of slowly induced proteins exhibited a gradual increase in the rate of synthesis after the onset of stress. Unlike other organisms, all salt stress-induced proteins in L. lactis were also subjected to heat stress induction. DnaK, GroEL, and GroES showed similar temporal patterns of induction during salt stress, resembling the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis.

Full Text

The Full Text of this article is available as a PDF (1.8M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnau J, Sørensen KI, Appel KF, Vogensen FK, Hammer K. Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology. 1996 Jul;142(Pt 7):1685–1691. [PubMed]
  • Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol. 1993 Aug;9(4):671–680. [PubMed]
  • Cancilla MR, Hillier AJ, Davidson BE. Lactococcus lactis glyceraldehyde-3-phosphate dehydrogenase gene, gap: further evidence for strongly biased codon usage in glycolytic pathway genes. Microbiology. 1995 Apr;141(Pt 4):1027–1036. [PubMed]
  • Cancilla MR, Davidson BE, Hillier AJ, Nguyen NY, Thompson J. The Lactococcus lactis triosephosphate isomerase gene, tpi, is monocistronic. Microbiology. 1995 Jan;141(Pt 1):229–238. [PubMed]
  • Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. [PMC free article] [PubMed]
  • Csonka LN, Hanson AD. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. [PubMed]
  • Delorme C, Godon JJ, Ehrlich SD, Renault P. Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol. 1993 Jul;175(14):4391–4399. [PMC free article] [PubMed]
  • Duwat P, Ehrlich SD, Gruss A. The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol. 1995 Sep;17(6):1121–1131. [PubMed]
  • Eaton T, Shearman C, Gasson M. Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis. J Gen Microbiol. 1993 Dec;139(12):3253–3264. [PubMed]
  • Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983 Apr;154(1):1–9. [PMC free article] [PubMed]
  • Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–634. [PubMed]
  • Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD, Renault P. Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol. 1993 Jul;175(14):4383–4390. [PMC free article] [PubMed]
  • Hartl FU, Hlodan R, Langer T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci. 1994 Jan;19(1):20–25. [PubMed]
  • Hecker M, Heim C, Völker U, Wölfel L. Induction of stress proteins by sodium chloride treatment in Bacillus subtilis. Arch Microbiol. 1988;150(6):564–566. [PubMed]
  • Hecker M, Schumann W, Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. [PubMed]
  • Herman C, Thévenet D, D'Ari R, Bouloc P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3516–3520. [PMC free article] [PubMed]
  • Jensen PR, Hammer K. Minimal Requirements for Exponential Growth of Lactococcus lactis. Appl Environ Microbiol. 1993 Dec;59(12):4363–4366. [PMC free article] [PubMed]
  • Kim SG, Batt CA. Cloning and sequencing of the Lactococcus lactis subsp. lactis groESL operon. Gene. 1993 May 15;127(1):121–126. [PubMed]
  • Konings WN, Poolman B, Driessen AJ. Bioenergetics and solute transport in lactococci. Crit Rev Microbiol. 1989;16(6):419–476. [PubMed]
  • Llanos RM, Harris CJ, Hillier AJ, Davidson BE. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol. 1993 May;175(9):2541–2551. [PMC free article] [PubMed]
  • Meury J, Kohiyama M. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. J Bacteriol. 1991 Jul;173(14):4404–4410. [PMC free article] [PubMed]
  • Molenaar D, Hagting A, Alkema H, Driessen AJ, Konings WN. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol. 1993 Sep;175(17):5438–5444. [PMC free article] [PubMed]
  • Ploug M, Jensen AL, Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. [PubMed]
  • Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):125–147. [PubMed]
  • Schläpfer BS, Zuber H. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus. Gene. 1992 Dec 1;122(1):53–62. [PubMed]
  • Schulz A, Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol. 1996 Feb;178(4):1088–1093. [PMC free article] [PubMed]
  • van Asseldonk M, Simons A, Visser H, de Vos WM, Simons G. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol. 1993 Mar;175(6):1637–1644. [PMC free article] [PubMed]
  • Völker U, Mach H, Schmid R, Hecker M. Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol. 1992 Oct;138(10):2125–2135. [PubMed]
  • Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology. 1994 Apr;140(Pt 4):741–752. [PubMed]
  • Wetzstein M, Völker U, Dedio J, Löbau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol. 1992 May;174(10):3300–3310. [PMC free article] [PubMed]
  • Whitaker RD, Batt CA. Characterization of the Heat Shock Response in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1991 May;57(5):1408–1412. [PMC free article] [PubMed]
  • Yamamori T, Ito K, Nakamura Y, Yura T. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J Bacteriol. 1978 Jun;134(3):1133–1140. [PMC free article] [PubMed]
  • Yamamori T, Yura T. Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control. J Bacteriol. 1980 Jun;142(3):843–851. [PMC free article] [PubMed]
  • Yura T, Nagai H, Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. [PubMed]
  • Yuan G, Wong SL. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol. 1995 Nov;177(22):6462–6468. [PMC free article] [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...