• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
Appl Environ Microbiol. Aug 1996; 62(8): 3005–3010.
PMCID: PMC168087

An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria.

Abstract

Arbuscular-mycorrhizal fungi are obligate endosymbionts that colonize the roots of almost 80% of land plants. This paper describes the employment of a combined morphological and molecular approach to demonstrate that the cytoplasm of the arbuscular-mycorrhizal fungus Gigaspora margarita harbors a further bacterial endosymbiont. Intracytoplasmic bacterium-like organisms (BLOs) were detected ultrastructurally in its spores and germinating and symbiotic mycelia. Morphological observations with a fluorescent stain revealed about 250,000 live bacteria inside each spore. The sequence for the small-subunit rRNA gene obtained for the BLOs from the spores was compared with those for representatives of the eubacterial lineages. Molecular phylogenetic analysis unambiguously showed that the endosymbiont of G. margarita was an rRNA group II pseudomanad (genus Burkholderia). PCR assays with specifically designed oligonucleotides were used to check that the sequence came from the BLOs. Successful amplification was obtained when templates from both the spores and the symbiotic mycelia were used. A band of the expected length was also obtained from spores of a Scutellospora sp. No bands were given by the negative controls. These findings indicate that mycorrhizal systems can include plant, fungal, and bacterial cells.

Full Text

The Full Text of this article is available as a PDF (721K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. [PMC free article] [PubMed]
  • Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L. Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci. 1994 Jul 22;257(1348):43–48. [PubMed]
  • Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L. The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc Biol Sci. 1995 Mar 22;259(1356):293–299. [PubMed]
  • Distel DL, Cavanaugh CM. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol. 1994 Apr;176(7):1932–1938. [PMC free article] [PubMed]
  • Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. [PMC free article] [PubMed]
  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991 Oct;173(20):6321–6324. [PMC free article] [PubMed]
  • Ochman H, Wilson AC. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. [PubMed]
  • Pirozynski KA, Malloch DW. The origin of land plants: a matter of mycotrophism. Biosystems. 1975 Mar;6(3):153–164. [PubMed]
  • Van de Peer Y, De Wachter R. TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci. 1993 Apr;9(2):177–182. [PubMed]
  • Woese CR. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. [PMC free article] [PubMed]
  • Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. [PubMed]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...