• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aacPermissionsJournals.ASM.orgJournalAAC ArticleJournal InfoAuthorsReviewers
Antimicrob Agents Chemother. Jul 1996; 40(7): 1754–1756.
PMCID: PMC163413

Isoniazid induces expression of the antigen 85 complex in Mycobacterium tuberculosis.


Exposure to isoniazid induced the expression of several secreted proteins in Mycobacterium tuberculosis H37Rv. Two-dimensional gel electrophoresis and immunoblot analyses indicated that two of the prominent isonicotinic acid hydrazide-inducible polypeptides were members of the antigen 85 complex, recently demonstrated to have mycolyltransferase activity. We postulate the existence of an intermediate, whose production is inhibited by isonicotinic acid hydrazide, which plays a negative feedback regulatory role in the metabolism of mycolic acids are revealed by the overexpression of the antigen 85 complex. The approach described here relies on analyses of differential gene expression following exposure to inhibitors and may become a more general tool in dissecting the effects of antimicrobial agents.

Full Text

The Full Text of this article is available as a PDF (301K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abou-Zeid C, Garbe T, Lathigra R, Wiker HG, Harboe M, Rook GA, Young DB. Genetic and immunological analysis of Mycobacterium tuberculosis fibronectin-binding proteins. Infect Immun. 1991 Aug;59(8):2712–2718. [PMC free article] [PubMed]
  • Abou-Zeid C, Ratliff TL, Wiker HG, Harboe M, Bennedsen J, Rook GA. Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infect Immun. 1988 Dec;56(12):3046–3051. [PMC free article] [PubMed]
  • Andersen AB, Yuan ZL, Hasløv K, Vergmann B, Bennedsen J. Interspecies reactivity of five monoclonal antibodies to Mycobacterium tuberculosis as examined by immunoblotting and enzyme-linked immunosorbent assay. J Clin Microbiol. 1986 Mar;23(3):446–451. [PMC free article] [PubMed]
  • Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect Immun. 1991 Jun;59(6):1905–1910. [PMC free article] [PubMed]
  • Bloom BR, Murray CJ. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. [PubMed]
  • Borremans M, de Wit L, Volckaert G, Ooms J, de Bruyn J, Huygen K, van Vooren JP, Stelandre M, Verhofstadt R, Content J. Cloning, sequence determination, and expression of a 32-kilodalton-protein gene of Mycobacterium tuberculosis. Infect Immun. 1989 Oct;57(10):3123–3130. [PMC free article] [PubMed]
  • Content J, de la Cuvellerie A, De Wit L, Vincent-Levy-Frébault V, Ooms J, De Bruyn J. The genes coding for the antigen 85 complexes of Mycobacterium tuberculosis and Mycobacterium bovis BCG are members of a gene family: cloning, sequence determination, and genomic organization of the gene coding for antigen 85-C of M. tuberculosis. Infect Immun. 1991 Sep;59(9):3205–3212. [PMC free article] [PubMed]
  • Deretic V, Philipp W, Dhandayuthapani S, Mudd MH, Curcic R, Garbe T, Heym B, Via LE, Cole ST. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol. 1995 Sep;17(5):889–900. [PubMed]
  • Dessen A, Quémard A, Blanchard JS, Jacobs WR, Jr, Sacchettini JC. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. [PubMed]
  • De Wit L, Palou M, Content J. Nucleotide sequence of the 85B-protein gene of Mycobacterium bovis BCG and Mycobacterium tuberculosis. DNA Seq. 1994;4(4):267–270. [PubMed]
  • Garbe TR, Hibler NS, Deretic V. Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates. Mol Med. 1996 Jan;2(1):134–142. [PMC free article] [PubMed]
  • Heym B, Zhang Y, Poulet S, Young D, Cole ST. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. [PMC free article] [PubMed]
  • Horwitz MA, Lee BW, Dillon BJ, Harth G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1530–1534. [PMC free article] [PubMed]
  • Kremer L, Baulard A, Estaquier J, Content J, Capron A, Locht C. Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol. 1995 Feb;177(3):642–653. [PMC free article] [PubMed]
  • Quémard A, Lanéelle G, Lacave C. Mycolic acid synthesis: a target for ethionamide in mycobacteria? Antimicrob Agents Chemother. 1992 Jun;36(6):1316–1321. [PMC free article] [PubMed]
  • Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR, Jr, Blanchard JS. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry. 1995 Jul 4;34(26):8235–8241. [PubMed]
  • Sathyamoorthy N, Takayama K. Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis. J Biol Chem. 1987 Oct 5;262(28):13417–13423. [PubMed]
  • Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev. 1992 Dec;56(4):648–661. [PMC free article] [PubMed]
  • Wiker HG, Nagai S, Harboe M, Ljungqvist L. A family of cross-reacting proteins secreted by Mycobacterium tuberculosis. Scand J Immunol. 1992 Aug;36(2):307–319. [PubMed]
  • Young DB, Garbe TR. Heat shock proteins and antigens of Mycobacterium tuberculosis. Infect Immun. 1991 Sep;59(9):3086–3093. [PMC free article] [PubMed]
  • Zhang Y, Garbe T, Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. [PubMed]
  • Zhang Y, Young DB. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol. 1993 Jun;1(3):109–113. [PubMed]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links
  • Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...