• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of aacPermissionsJournals.ASM.orgJournalAAC ArticleJournal InfoAuthorsReviewers
Antimicrob Agents Chemother. Mar 1995; 39(3): 694–701.
PMCID: PMC162607

Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope.

Abstract

Ethambutol is known to rapidly inhibit biosynthesis of the arabinan component of the mycobacterial cell wall core polymer, arabinogalactan (K. Takayama and J. O. Kilburn, Antimicrob. Agents Chemother. 33:1493-1499, 1989). This effect was confirmed, and it was also shown that ethambutol inhibits biosynthesis of the arabinan of lipoarabinomannan, a lipopolysaccharide noncovalently associated with the cell wall core. In contrast to cell wall core arabinan, which is completely inhibited by ethambutol, synthesis of the arabinan of lipoarabinomannan was only partially affected, demonstrating a differential effect on arabinan synthesis in the two locales. Further studies of the effect of ethambutol on cell wall biosynthesis revealed that the synthesis of galactan in the cell wall core is strongly inhibited by the drug. In addition, ethambutol treatment resulted in the cleavage of arabinosyl residues present in the mycobacterial cell wall; more than 50% of the arabinan in the cell wall core was removed from the wall 1 h after addition of the drug to growing mycobacterial cultures. In contrast, galactan was not released from the cell wall during ethambutol treatment. The natural function of the arabinosyl-releasing enzyme remains unknown, but its action in combination with inhibition of synthesis during ethambutol treatment results in severe disruption of the mycobacterial cell wall. Accordingly, ethambutol-induced damage to the cell wall provides a ready molecular explanation for the known synergetic effects of ethambutol with other chemotherapeutic agents. Nevertheless, the initial direct effect of ethambutol remains to be elucidated.

Full Text

The Full Text of this article is available as a PDF (311K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Brennan PJ, Heifets M, Ullom BP. Thin-layer chromatography of lipid antigens as a means of identifying nontuberculous mycobacteria. J Clin Microbiol. 1982 Mar;15(3):447–455. [PMC free article] [PubMed]
  • Chatterjee D, Bozic CM, McNeil M, Brennan PJ. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem. 1991 May 25;266(15):9652–9660. [PubMed]
  • Chatterjee D, Hunter SW, McNeil M, Brennan PJ. Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem. 1992 Mar 25;267(9):6228–6233. [PubMed]
  • Chatterjee D, Lowell K, Rivoire B, McNeil MR, Brennan PJ. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J Biol Chem. 1992 Mar 25;267(9):6234–6239. [PubMed]
  • Daffe M, Brennan PJ, McNeil M. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J Biol Chem. 1990 Apr 25;265(12):6734–6743. [PubMed]
  • FORBES M, KUCK NA, PEETS EA. EFFECT OF ETHAMBUTOL ON NUCLEIC ACID METABOLISM IN MYCOBACTERIUM SMEGMATIS AND ITS REVERSAL BY POLYAMINES AND DIVALENT CATIONS. J Bacteriol. 1965 May;89:1299–1305. [PMC free article] [PubMed]
  • Gaugler RW, Gabriel O. Biological mechanisms involved in the formation of deoxy sugars. VII. Biosynthesis of 6-deoxy-L-talose. J Biol Chem. 1973 Sep 10;248(17):6041–6049. [PubMed]
  • Gevaudan MJ, Bollet C, Mallet MN, de Micco P. In-vitro evaluation of clarithromycin, temafloxacin, and ethambutol in combination against Mycobacterium avium complex. J Antimicrob Chemother. 1993 May;31(5):725–730. [PubMed]
  • Ghuysen JM. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed]
  • Heifets LB. Synergistic effect of rifampin, streptomycin, ethionamide, and ethambutol on Mycobacterium intracellulare. Am Rev Respir Dis. 1982 Jan;125(1):43–48. [PubMed]
  • Hoffner SE, Svenson SB, Källenius G. Synergistic effects of antimycobacterial drug combinations on Mycobacterium avium complex determined radiometrically in liquid medium. Eur J Clin Microbiol. 1987 Oct;6(5):530–535. [PubMed]
  • Hunter SW, Brennan PJ. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem. 1990 Jun 5;265(16):9272–9279. [PubMed]
  • Hunter SW, Gaylord H, Brennan PJ. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem. 1986 Sep 15;261(26):12345–12351. [PubMed]
  • Iseman MD. Synergism: the Rosetta stone for Mycobacterium avium complex chemotherapy? Am Rev Respir Dis. 1988 Oct;138(4):767–768. [PubMed]
  • Källenius G, Svenson SB, Hoffner SE. Ethambutol: a key for Mycobacterium avium complex chemotherapy? Am Rev Respir Dis. 1989 Jul;140(1):264–264. [PubMed]
  • Kilburn JO, Greenberg J. Effect of ethambutol on the viable cell count in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1977 Mar;11(3):534–540. [PMC free article] [PubMed]
  • Kilburn JO, Takayama K. Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1981 Sep;20(3):401–404. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • McNeil MR, Brennan PJ. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991 May;142(4):451–463. [PubMed]
  • McNeil M, Daffe M, Brennan PJ. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem. 1990 Oct 25;265(30):18200–18206. [PubMed]
  • McNeil M, Daffe M, Brennan PJ. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem. 1991 Jul 15;266(20):13217–13223. [PubMed]
  • Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992 Oct 15;267(29):21058–21064. [PubMed]
  • Rastogi N, Goh KS, David HL. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother. 1990 May;34(5):759–764. [PMC free article] [PubMed]
  • Silve G, Valero-Guillen P, Quemard A, Dupont MA, Daffe M, Laneelle G. Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug. Antimicrob Agents Chemother. 1993 Jul;37(7):1536–1538. [PMC free article] [PubMed]
  • Takayama K, Armstrong EL, Kunugi KA, Kilburn JO. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1979 Aug;16(2):240–242. [PMC free article] [PubMed]
  • Takayama K, Kilburn JO. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989 Sep;33(9):1493–1499. [PMC free article] [PubMed]
  • Takayama K, Schnoes HK, Armstrong EL, Boyle RW. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J Lipid Res. 1975 Jul;16(4):308–317. [PubMed]
  • Wilson TM. Clinical experience with ethambutol. Antibiot Chemother. 1970;16:222–229. [PubMed]
  • Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem. 1994 Sep 16;269(37):23328–23335. [PubMed]
  • Yamashita K, Mizuochi T, Kobata A. Analysis of oligosaccharides by gel filtration. Methods Enzymol. 1982;83:105–126. [PubMed]
  • Zimmer BL, DeYoung DR, Roberts GD. In vitro synergistic activity of ethambutol, isoniazid, kanamycin, rifampin, and streptomycin against Mycobacterium avium-intracellulare complex. Antimicrob Agents Chemother. 1982 Jul;22(1):148–150. [PMC free article] [PubMed]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...