• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Mar 1996; 8(3): 403–416.
PMCID: PMC161109

The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant.

Abstract

The very high proportions of trienoic fatty acids found in chloroplast membranes of all higher plants suggest that these lipid structures might be essential for photosynthesis. We report here on the production of Arabidopsis triple mutants that contain negligible levels of trienoic fatty acids. Photosynthesis at 22[deg]C was barely affected, and vegetative growth of the mutants was identical with that of the wild type, demonstrating that any requirement for trienoic acyl groups in membrane structure and function is relatively subtle. Although vegetative growth and development were unaffected, the triple mutants are male sterlle and produce no seed under normal conditions. Comparisons of pollen development in wild-type and triple mutant flowers established that pollen grains in the mutant developed to the tricellular stage. Exogenous applications of [alpha]-llnolenate or jasmonate restored fertility. Taken together, the results demonstrate that the critical role of trienoic acids in the life cycle of plants is as the precursor of oxylipin, a signaling compound that regulates final maturation processes and the release of pollen.

Full Text

The Full Text of this article is available as a PDF (2.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Browse J, McCourt P, Somerville C. A mutant of Arabidopsis deficient in c(18:3) and c(16:3) leaf lipids. Plant Physiol. 1986 Jul;81(3):859–864. [PMC free article] [PubMed]
  • Browse J, Warwick N, Somerville CR, Slack CR. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana. Biochem J. 1986 Apr 1;235(1):25–31. [PMC free article] [PubMed]
  • Browse J, McConn M, James D, Jr, Miquel M. Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem. 1993 Aug 5;268(22):16345–16351. [PubMed]
  • Chaudhury AM. Nuclear Genes Controlling Male Fertility. Plant Cell. 1993 Oct;5(10):1277–1283. [PMC free article] [PubMed]
  • Coleman AW, Goff LJ. Applications of fluorochromes to pollen biology. I. Mithramycin and 4',6-diamidino-2-phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA. Stain Technol. 1985 May;60(3):145–154. [PubMed]
  • Croft KPC, Juttner F, Slusarenko AJ. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993 Jan;101(1):13–24. [PMC free article] [PubMed]
  • Farmer EE, Ryan CA. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. [PMC free article] [PubMed]
  • Feys BJF, Benedetti CE, Penfold CN, Turner JG. Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. Plant Cell. 1994 May;6(5):751–759. [PMC free article] [PubMed]
  • Gibson S, Arondel V, Iba K, Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1615–1621. [PMC free article] [PubMed]
  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. [PMC free article] [PubMed]
  • Heslop-Harrison J, Heslop-Harrison Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 1970 May;45(3):115–120. [PubMed]
  • Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem. 1993 Nov 15;268(32):24099–24105. [PubMed]
  • McConn M, Hugly S, Browse J, Somerville C. A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase. Plant Physiol. 1994 Dec;106(4):1609–1614. [PMC free article] [PubMed]
  • McKeon TA, Stumpf PK. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J Biol Chem. 1982 Oct 25;257(20):12141–12147. [PubMed]
  • Miquel M, Browse J. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem. 1992 Jan 25;267(3):1502–1509. [PubMed]
  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994 Jan;6(1):147–158. [PMC free article] [PubMed]
  • Preuss D, Lemieux B, Yen G, Davis RW. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993 Jun;7(6):974–985. [PubMed]
  • Regan SM, Moffatt BA. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant. Plant Cell. 1990 Sep;2(9):877–889. [PMC free article] [PubMed]
  • Roughan PG, Holland R, Slack CR. The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1-14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves. Biochem J. 1980 Apr 15;188(1):17–24. [PMC free article] [PubMed]
  • Schmidt H, Dresselhaus T, Buck F, Heinz E. Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol Biol. 1994 Oct;26(2):631–642. [PubMed]
  • Shanklin J, Somerville C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2510–2514. [PMC free article] [PubMed]
  • Shimakata T, Stumpf PK. Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5808–5812. [PMC free article] [PubMed]
  • Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. [PMC free article] [PubMed]
  • Vick BA, Zimmerman DC. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. [PMC free article] [PubMed]
  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Pérez-Grau L, Kinney AJ, Hitz WD, Booth JR, Jr, Schweiger B, Stecca KL, et al. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 1993 Oct;103(2):467–476. [PMC free article] [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...