• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Aug 1995; 7(8): 1249–1258.
PMCID: PMC160948

Genetic separation of third and fourth whorl functions of AGAMOUS.

Abstract

AGAMOUS (AG) is an Arabidopsis MADS box gene required for normal development of the third and fourth whorls of the flower. In previously described ag mutants, the third whorl stamens are replaced by petals, and the fourth whorl is replaced by another (mutant) flower. We describe two new ag alleles, ag-4 and AG-Met205, retaining partial AG activity. Both produce flowers with stamens in the third whorl and indeterminate floral meristems; however, ag-4 flowers contain sepals in the fourth whorl, and AG-Met205 produces carpels. The ag-4 mutation results in partial loss of the C terminus of the K domain, a putative coiled coil, and AG-Met205 contains a site-directed mutation that causes a single amino acid change in this same region of the K box. Two models that might explain how these changes in AG result in the separation of different AG activities are discussed.

Full Text

The Full Text of this article is available as a PDF (1.9M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. [PMC free article] [PubMed]
  • Bowman JL, Drews GN, Meyerowitz EM. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell. 1991 Aug;3(8):749–758. [PMC free article] [PubMed]
  • Chasan R. A Tale of Two Phenotypes. Plant Cell. 1994 May;6(5):571–573. [PMC free article]
  • Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. [PubMed]
  • Cohen C, Parry DA. Alpha-helical coiled coils: more facts and better predictions. Science. 1994 Jan 28;263(5146):488–489. [PubMed]
  • Couso JP, Bate M, Martínez-Arias A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science. 1993 Jan 22;259(5094):484–489. [PubMed]
  • Drews GN, Bowman JL, Meyerowitz EM. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. [PubMed]
  • Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell. 1994 Jan 14;76(1):131–143. [PubMed]
  • Herskowitz I. A regulatory hierarchy for cell specialization in yeast. Nature. 1989 Dec 14;342(6251):749–757. [PubMed]
  • Ho CY, Adamson JG, Hodges RS, Smith M. Heterodimerization of the yeast MATa1 and MAT alpha 2 proteins is mediated by two leucine zipper-like coiled-coil motifs. EMBO J. 1994 Mar 15;13(6):1403–1413. [PMC free article] [PubMed]
  • Huang H, Mizukami Y, Hu Y, Ma H. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res. 1993 Oct 11;21(20):4769–4776. [PMC free article] [PubMed]
  • Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992 Feb 21;68(4):683–697. [PubMed]
  • Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. [PubMed]
  • Ma C, Zhou Y, Beachy PA, Moses K. The segment polarity gene hedgehog is required for progression of the morphogenetic furrow in the developing Drosophila eye. Cell. 1993 Dec 3;75(5):927–938. [PubMed]
  • Ma H, Yanofsky MF, Meyerowitz EM. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. [PubMed]
  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. [PubMed]
  • McBride KE, Summerfelt KR. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol. 1990 Feb;14(2):269–276. [PubMed]
  • Mueller CG, Nordheim A. A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation. EMBO J. 1991 Dec;10(13):4219–4229. [PMC free article] [PubMed]
  • Shiraishi H, Okada K, Shimura Y. Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 1993 Aug;4(2):385–398. [PubMed]
  • Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. [PMC free article] [PubMed]
  • Steinert PM, Zimmerman SB, Starger JM, Goldman RD. Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6098–6101. [PMC free article] [PubMed]
  • Valvekens D, Montagu MV, Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. [PMC free article] [PubMed]
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...