• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Jun 1992; 4(6): 645–656.
PMCID: PMC160161

Acquired resistance in Arabidopsis.

Abstract

Acquired resistance is an important component of the complex disease resistance mechanism in plants, which can result from either pathogen infection or treatment with synthetic, resistance-inducing compounds. In this study, Arabidopsis, a tractable genetic system, is shown to develop resistance to a bacterial and a fungal pathogen following 2,6-dichloroisonicotinic acid (INA) treatment. Three proteins that accumulated to high levels in the apoplast in response to INA treatment were purified and characterized. Expression of the genes corresponding to these proteins was induced by INA, pathogen infection, and salicylic acid, the latter being a putative endogenous signal for acquired resistance. Arabidopsis should serve as a genetic model for studies of this type of immune response in plants.

Full Text

The Full Text of this article is available as a PDF (2.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bednarek SY, Raikhel NV. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell. 1991 Nov;3(11):1195–1206. [PMC free article] [PubMed]
  • Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Dong X, Mindrinos M, Davis KR, Ausubel FM. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell. 1991 Jan;3(1):61–72. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Keen NT. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. [PubMed]
  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. [PMC free article] [PubMed]
  • Malamy J, Carr JP, Klessig DF, Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. [PubMed]
  • Mauch F, Mauch-Mani B, Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. [PMC free article] [PubMed]
  • Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B. Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990 Nov 16;250(4983):1004–1006. [PubMed]
  • Metzler MC, Cutt JR, Klessig DF. Isolation and Characterization of a Gene Encoding a PR-1-Like Protein from Arabidopsis thaliana. Plant Physiol. 1991 May;96(1):346–348. [PMC free article] [PubMed]
  • Payne G, Ward E, Gaffney T, Goy PA, Moyer M, Harper A, Meins F, Jr, Ryals J. Evidence for a third structural class of beta-1,3-glucanase in tobacco. Plant Mol Biol. 1990 Dec;15(6):797–808. [PubMed]
  • Rasmussen JB, Hammerschmidt R, Zook MN. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991 Dec;97(4):1342–1347. [PMC free article] [PubMed]
  • ROSS AF. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology. 1961 Jul;14:329–339. [PubMed]
  • ROSS AF. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. [PubMed]
  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. [PubMed]
  • Samac DA, Hironaka CM, Yallaly PE, Shah DM. Isolation and Characterization of the Genes Encoding Basic and Acidic Chitinase in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):907–914. [PMC free article] [PubMed]
  • Singh NK, Nelson DE, Kuhn D, Hasegawa PM, Bressan RA. Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol. 1989 Jul;90(3):1096–1101. [PMC free article] [PubMed]
  • Verburg JG, Huynh QK. Purification and Characterization of an Antifungal Chitinase from Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):450–455. [PMC free article] [PubMed]
  • Vigers AJ, Roberts WK, Selitrennikoff CP. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. [PubMed]
  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. [PMC free article] [PubMed]
  • Whalen MC, Innes RW, Bent AF, Staskawicz BJ. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991 Jan;3(1):49–59. [PMC free article] [PubMed]
  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell. 1991 Aug;3(8):809–818. [PMC free article] [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...