• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Aug 1991; 3(8): 749–758.
PMCID: PMC160042

Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.

Abstract

Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth whorl organ primordia but is not present in the organ primordia of whorls one and two. In contrast to the early expression pattern, later in flower development, AG RNA is restricted to specific cell types within the stamens and carpels as cellular differentiation occurs in those organs. Ectopic AG expression patterns in flowers mutant for the floral homeotic gene APETELA2 (AP2), which regulates early AG expression, suggest that the late AG expression is not directly dependent on AP2 activity.

Full Text

The Full Text of this article is available as a PDF (2.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Akam M. The molecular basis for metameric pattern in the Drosophila embryo. Development. 1987 Sep;101(1):1–22. [PubMed]
  • Bowman JL, Smyth DR, Meyerowitz EM. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. [PubMed]
  • Carpenter R, Coen ES. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 1990 Sep;4(9):1483–1493. [PubMed]
  • Drews GN, Bowman JL, Meyerowitz EM. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. [PubMed]
  • Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW. AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell. 1989 Dec;1(12):1195–1208. [PMC free article] [PubMed]
  • Ma H, Yanofsky MF, Meyerowitz EM. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. [PubMed]
  • Norman C, Runswick M, Pollock R, Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell. 1988 Dec 23;55(6):989–1003. [PubMed]
  • Regan SM, Moffatt BA. Cytochemical Analysis of Pollen Development in Wild-Type Arabidopsis and a Male-Sterile Mutant. Plant Cell. 1990 Sep;2(9):877–889. [PMC free article] [PubMed]
  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. [PubMed]
  • Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. [PMC free article] [PubMed]
  • Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990 Mar;9(3):605–613. [PMC free article] [PubMed]
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...