Logo of plntcellLink to Publisher's site
Plant Cell. Jan 1991; 3(1): 49–59.
PMCID: PMC159978

Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.


To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.

Full Text

The Full Text of this article is available as a PDF (1.8M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Dixon RA, Harrison MJ. Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet. 1990;28:165–234. [PubMed]
  • Dong X, Mindrinos M, Davis KR, Ausubel FM. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell. 1991 Jan;3(1):61–72. [PMC free article] [PubMed]
  • Gabriel DW, Burges A, Lazo GR. Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6415–6419. [PMC free article] [PubMed]
  • KING EO, WARD MK, RANEY DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed]
  • Kobayashi DY, Tamaki SJ, Keen NT. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci U S A. 1989 Jan;86(1):157–161. [PMC free article] [PubMed]
  • Kobayashi DY, Tamaki SJ, Keen NT. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):94–102. [PubMed]
  • Koch E, Slusarenko A. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell. 1990 May;2(5):437–445. [PMC free article] [PubMed]
  • Lamb CJ, Lawton MA, Dron M, Dixon RA. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. [PubMed]
  • Meyerowitz EM. Arabidopsis, a useful weed. Cell. 1989 Jan 27;56(2):263–269. [PubMed]
  • Nam HG, Giraudat J, Den Boer B, Moonan F, Loos WDB, Hauge BM, Goodman HM. Restriction Fragment Length Polymorphism Linkage Map of Arabidopsis thaliana. Plant Cell. 1989 Jul;1(7):699–705. [PMC free article] [PubMed]
  • Prentki P, Krisch HM. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. [PubMed]
  • Ronald PC, Staskawicz BJ. The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact. 1988 May-Jun;1(5):191–198. [PubMed]
  • Staskawicz BJ, Dahlbeck D, Keen NT. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6024–6028. [PMC free article] [PubMed]
  • Straus D, Ausubel FM. Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1889–1893. [PMC free article] [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...