• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of janatLink to Publisher's site
J Anat. 2001 Jul-Aug; 199(Pt 1-2): 63–84.
PMCID: PMC1594988

Asymmetry in the epithalamus of vertebrates

Abstract

The epithalamus is a major subdivision of the diencephalon constituted by the habenular nuclei and pineal complex. Structural asymmetries in this region are widespread amongst vertebrates and involve differences in size, neuronal organisation, neurochemistry and connectivity. In species that possess a photoreceptive parapineal organ, this structure projects asymmetrically to the left habenula, and in teleosts it is also situated on the left side of the brain. Asymmetries in size between the left and right sides of the habenula are often associated with asymmetries in neuronal organisation, although these two types of asymmetry follow different evolutionary courses. While the former is more conspicuous in fishes (with the exception of teleosts), asymmetries in neuronal organisation are more robust in amphibia and reptiles. Connectivity of the parapineal organ with the left habenula is not always coupled with asymmetries in habenular size and/or neuronal organisation suggesting that, at least in some species, assignment of parapineal and habenular asymmetries may be independent events.

The evolutionary origins of epithalamic structures are uncertain but asymmetry in this region is likely to have existed at the origin of the vertebrate, perhaps even the chordate, lineage. In at least some extant vertebrate species, epithalamic asymmetries are established early in development, suggesting a genetic regulation of asymmetry. In some cases, epigenetic factors such as hormones also influence the development of sexually dimorphic habenular asymmetries. Although the genetic and developmental mechanisms by which neuroanatomical asymmetries are established remain obscure, some clues regarding the mechanisms underlying laterality decisions have recently come from studies in zebrafish. The Nodal signalling pathway regulates laterality by biasing an otherwise stochastic laterality decision to the left side of the epithalamus. This genetic mechanism ensures a consistency of epithalamic laterality within the population. Between species, the laterality of asymmetry is variable and a clear evolutionary picture is missing. We propose that epithalamic structural asymmetries per se and not the laterality of these asymmetries are important for the behaviour of individuals within a species. A consistency of the laterality within a population may play a role in social behaviours between individuals of the species.

Keywords: Epithalamus, habenula, pineal complex, parapineal organ, asymmetry, evolution, genetics

Full Text

The Full Text of this article is available as a PDF (646K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adrio F, Anadón R, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J Comp Neurol. 2000 Oct 30;426(4):602–621. [PubMed]
  • Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol. 2000 May 1;420(2):139–170. [PubMed]
  • KAPPERS JA. SURVEY OF THE INNERVATION OF THE EPIPHYSIS CEREBRI AND THE ACCESSORY PINEAL ORGANS OF VERTEBRATES. Prog Brain Res. 1965;10:87–153. [PubMed]
  • Bisazza A, De santi A, Vallortigara G. Laterality and cooperation: mosquitofish move closer to a predator when the companion is on their left side. Anim Behav. 1999 May;57(5):1145–1149. [PubMed]
  • Bisgrove BW, Essner JJ, Yost HJ. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development. 2000 Aug;127(16):3567–3579. [PubMed]
  • Braitenberg V, Kemali M. Exceptions to bilateral symmetry in the epithalamus of lower vertebrates. J Comp Neurol. 1970 Feb;138(2):137–146. [PubMed]
  • Burdine RD, Schier AF. Conserved and divergent mechanisms in left-right axis formation. Genes Dev. 2000 Apr 1;14(7):763–776. [PubMed]
  • Butler AB, Northcutt RG. Architectonic studies of the diencephalon of Iguana iguana (Linnaeus). J Comp Neurol. 1973 Jun 15;149(4):439–462. [PubMed]
  • Butler AB, Saidel WM. Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analysis and primary visual pathways. Brain Behav Evol. 1991;38(2-3):127–153. [PubMed]
  • Butler AB, Northcutt RG. The diencephalon of the Pacific herring, Clupea harengus: cytoarchitectonic analysis. J Comp Neurol. 1993 Feb 22;328(4):527–546. [PubMed]
  • Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left-right determination in vertebrates. Cell. 2000 Mar 31;101(1):9–21. [PubMed]
  • Chen H, Bagri A, Zupicich JA, Zou Y, Stoeckli E, Pleasure SJ, Lowenstein DH, Skarnes WC, Chédotal A, Tessier-Lavigne M. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron. 2000 Jan;25(1):43–56. [PubMed]
  • Chen JN, van Eeden FJ, Warren KS, Chin A, Nüsslein-Volhard C, Haffter P, Fishman MC. Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development. 1997 Nov;124(21):4373–4382. [PubMed]
  • Cole WC, Youson JH. Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus L. Am J Anat. 1982 Oct;165(2):131–163. [PubMed]
  • Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron. 2000 Nov;28(2):399–409. [PubMed]
  • Cruce JA. A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus. J Comp Neurol. 1974 Feb 1;153(3):215–238. [PubMed]
  • Diamond MC, Johnson RE, Young D, Singh SS. Age-related morphologic differences in the rat cerebral cortex and hippocampus: male-female; right-left. Exp Neurol. 1983 Jul;81(1):1–13. [PubMed]
  • Díaz C, Puelles L. Afferent connections of the habenular complex in the lizard Gallotia galloti. Brain Behav Evol. 1992;39(5):312–324. [PubMed]
  • Díaz C, Puelles L. In vitro HRP-labeling of the fasciculus retroflexus in the lizard Gallotia galloti. Brain Behav Evol. 1992;39(5):305–311. [PubMed]
  • EDINGER T. Paired pineal organs. Prog Neurobiol. 1956;(2):121–129. [PubMed]
  • Ekström P, Ebbesson SO. The left habenular nucleus contains a discrete serotonin-immunoreactive subnucleus in the coho salmon (Oncorhynchus kisutch). Neurosci Lett. 1988 Aug 31;91(2):121–125. [PubMed]
  • Ekström P, Borg B, van Veen T. Ontogenetic development of the pineal organ, parapineal organ, and retina of the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Development of photoreceptors. Cell Tissue Res. 1983;233(3):593–609. [PubMed]
  • Ekström P, Foster RG, Korf HW, Schalken JJ. Antibodies against retinal photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. J Comp Neurol. 1987 Nov 1;265(1):25–33. [PubMed]
  • Eldred WD, Finger TE, Nolte J. Central projections of the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell Tissue Res. 1980;211(2):215–222. [PubMed]
  • Engbretson GA, Reiner A, Brecha N. Habenular asymmetry and the central connections of the parietal eye of the lizard. J Comp Neurol. 1981 May 1;198(1):155–165. [PubMed]
  • Engbretson GA, Brecha N, Reiner A. Substance P-like immunoreactivity in the parietal eye visual system of the lizard Uta stansburiana. Cell Tissue Res. 1982;227(3):543–554. [PubMed]
  • Farner HP. Untersuchungen zur Embryonalentwicklung des Gehirns von Scyliorhinus canicula (L.). I. Bildung der Hirngestalt, Migrationsmodi und -phasen, Bau des Zwischenhirns. J Hirnforsch. 1978;19(4):313–332. [PubMed]
  • Fernald RD, Shelton LC. The organization of the diencephalon and the pretectum in the cichlid fish, Haplochromis burtoni. J Comp Neurol. 1985 Aug 8;238(2):202–217. [PubMed]
  • FRONTERA JG. A study of the anuran diencephalon. J Comp Neurol. 1952 Feb;96(1):1–69. [PubMed]
  • Gugliemotti V, Fiorino L. Asymmetry in the left and right habenulo-interpeduncular tracts in the frog. Brain Res Bull. 1998;45(1):105–110. [PubMed]
  • Guglielmotti V, Fiorino L. Nitric oxide synthase activity reveals an asymmetrical organization of the frog habenulae during development: A histochemical and cytoarchitectonic study from tadpoles to the mature Rana esculenta, with notes on the pineal complex. J Comp Neurol. 1999 Aug 30;411(3):441–454. [PubMed]
  • Gundy GC, Ralph CL, Wurst GZ. Parietal eyes in lizards: zoogeographical correlates. Science. 1975 Nov 14;190(4215):671–673. [PubMed]
  • Güntürkün O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A, Skiba M. Asymmetry pays: visual lateralization improves discrimination success in pigeons. Curr Biol. 2000 Sep 7;10(17):1079–1081. [PubMed]
  • Gurusinghe CJ, Ehrlich D. Sex-dependent structural asymmetry of the medial habenular nucleus of the chicken brain. Cell Tissue Res. 1985;240(1):149–152. [PubMed]
  • Gurusinghe CJ, Zappia JV, Ehrlich D. The influence of testosterone on the sex-dependent structural asymmetry of the medial habenular nucleus in the chicken. J Comp Neurol. 1986 Nov 8;253(2):153–162. [PubMed]
  • Hafeez MA, Merhige ME. Light and electron microscopic study on the pineal complex of the coelacanth, Latimeria chalumnae Smith. Cell Tissue Res. 1977 Mar 9;178(2):249–265. [PubMed]
  • Herkenham M, Nauta WJ. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol. 1977 May 1;173(1):123–146. [PubMed]
  • Herkenham M, Nauta WJ. Efferent connections of the habenular nuclei in the rat. J Comp Neurol. 1979 Sep 1;187(1):19–47. [PubMed]
  • HOLMGREN U. ON THE ONTOGENY OF THE PINEAL- AND PARAPINEAL ORGANS IN TELEOST FISHES. Prog Brain Res. 1965;10:172–182. [PubMed]
  • Kemali M. Morphological asymmetry of the habenulae of a macrosmatic mammal, the mole. Z Mikrosk Anat Forsch. 1984;98(6):951–954. [PubMed]
  • Kemali M, Agrelli I. The habenulo-interpeduncular nuclear system of a reptilian representative Lacerta sicula. Z Mikrosk Anat Forsch. 1972;85(3):325–333. [PubMed]
  • Kemali M, Guglielmotti V. An electron microscope observation of the right and the two left portions of the habenular nuclei of the frog. J Comp Neurol. 1977 Nov 15;176(2):133–148. [PubMed]
  • Kemali M, Miralto A. The habenular nuclei of the elasmobranch "Scyllium stellare": myelinated perikarya. Am J Anat. 1979 May;155(1):147–152. [PubMed]
  • Kemali M, Guglielmotti V. The distribution of substance P in the habenulo-interpeduncular system of the frog shown by an immunohistochemical method. Arch Ital Biol. 1984 Dec;122(4):269–280. [PubMed]
  • Kemali M, Guglielmotti V, Fiorino L. The asymmetry of the habenular nuclei of female and male frogs in spring and in winter. Brain Res. 1990 May 28;517(1-2):251–255. [PubMed]
  • Kemali M, Miralto A, Sada E. Asymmetry of the habenulae in the elasmobranch "Scyllium stellare". I. Light microscopy. Z Mikrosk Anat Forsch. 1980;94(5):794–800. [PubMed]
  • Korf HW, Wagner U. Nervous connections of the parietal eye in adult Lacerta s. sicula Rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res. 1981;219(3):567–583. [PubMed]
  • C.Lacalli T. The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Philos Trans R Soc Lond B Biol Sci. 1998 Dec 29;353(1378):1943–1967. [PMC free article]
  • Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, Izpisúa Belmonte JC, Halpern ME. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development. 2000 Dec;127(23):5101–5112. [PubMed]
  • Lipp HP, Collins RL, Nauta WJ. Structural asymmetries in brains of mice selected for strong lateralization. Brain Res. 1984 Sep 24;310(2):393–396. [PubMed]
  • Maler L, Sas E, Johnston S, Ellis W. An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat. 1991 Jan-Feb;4(1):1–38. [PubMed]
  • Masai I, Heisenberg CP, Barth KA, Macdonald R, Adamek S, Wilson SW. floating head and masterblind regulate neuronal patterning in the roof of the forebrain. Neuron. 1997 Jan;18(1):43–57. [PubMed]
  • Meiniel A. Présence d'indolamines dans les organes pinéal et parapinéal de Lampetra planeri (Pétromyzontoïdes). C R Acad Sci Hebd Seances Acad Sci D. 1978 Sep 11;287(4):313–316. [PubMed]
  • Meiniel A, Collin JP. Le complexe pinéal de l'ammocète (Lampetra planeri, Bl). IIdentification du ganglion sous-jacent a l'orane parapinéal et relations épithalamiques des organes pinéal et parapinéal. Z Zellforsch Mikrosk Anat. 1971;117(3):354–380. [PubMed]
  • Melone JH, Teitelbaum SA, Johnson RE, Diamond MC. The rat amygdaloid nucleus: a morphometric right-left study. Exp Neurol. 1984 Nov;86(2):293–302. [PubMed]
  • Meyer-Rochow VB, Stewart D. A light- and electron-microscopic study of the pineal complex of the ammocoete larva of the southern lamprey Geotria australis. Microsc Electron Biol Celular. 1992 Jun;16(1):69–85. [PubMed]
  • Miklósi A, Andrew RJ. Right eye use associated with decision to bite in zebrafish. Behav Brain Res. 1999 Nov 15;105(2):199–205. [PubMed]
  • Miklósi A, Andrew RJ, Savage H. Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol Behav. 1997 Dec 31;63(1):127–135. [PubMed]
  • Miralto A, Kemali M. Asymmetry of the habenulae in the elasmobranch "Scyllium stellare". II. Electron microscopy. Z Mikrosk Anat Forsch. 1980;94(5):801–813. [PubMed]
  • Morgan MJ, O'Donnell JM, Oliver RF. Development of left-right asymmetry in the habenular nuclei of Rana temporaria. J Comp Neurol. 1973 May 15;149(2):203–214. [PubMed]
  • Murphy GM., Jr Volumetric asymmetry in the human striate cortex. Exp Neurol. 1985 May;88(2):288–302. [PubMed]
  • Nieuwenhuys R. The brain of the lamprey in a comparative perspective. Ann N Y Acad Sci. 1977 Sep 30;299:97–145. [PubMed]
  • Nieuwenhuys R, Bodenheimer TS. The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J Morphol. 1966 Mar;118(3):415–449. [PubMed]
  • Nishida H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol. 1987 Jun;121(2):526–541. [PubMed]
  • Nishida H, Satoh N. Determination and regulation in the pigment cell lineage of the ascidian embryo. Dev Biol. 1989 Apr;132(2):355–367. [PubMed]
  • Nordeen EJ, Yahr P. Hemispheric asymmetries in the behavioral and hormonal effects of sexually differentiating mammalian brain. Science. 1982 Oct 22;218(4570):391–394. [PubMed]
  • OKSCHE A. SURVEY OF THE DEVELOPMENT AND COMPARATIVE MORPHOLOGY OF THE PINEAL ORGAN. Prog Brain Res. 1965;10:3–29. [PubMed]
  • Oksche A, Hartwig HG. Pineal sense organs--components of photoneuroendocrine systems. Prog Brain Res. 1979;52:113–130. [PubMed]
  • Peter RE, Gill VE. A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol. 1975 Jan 1;159(1):69–101. [PubMed]
  • Peter RE, Macey MJ, Gill VE. A stereotaxic atlas and technique for forebrain nuclei of the killfish, Fundulus heteroclitus. J Comp Neurol. 1975 Jan 1;159(1):103–127. [PubMed]
  • Rodriguez-Moldes I, Timmermans JP, Adriaensen D, De Groodt-Lasseel MH, Scheuermann DW, Anadon R. Asymmetric distribution of calbindin-D28K in the ganglia habenulae of an elasmobranch fish. Anat Embryol (Berl) 1990;181(4):389–391. [PubMed]
  • Rogers LJ. Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang. 2000 Jun 15;73(2):236–253. [PubMed]
  • Rubenstein JL, Shimamura K, Martinez S, Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci. 1998;21:445–477. [PubMed]
  • Ruiz S, Anadón R. The fine structure of lamellate cells in the brain of amphioxus (Branchiostoma lanceolatum, Cephalochordata). Cell Tissue Res. 1991 Mar;263(3):597–600. [PubMed]
  • Sandyk R. Relevance of the habenular complex to neuropsychiatry: a review and hypothesis. Int J Neurosci. 1991 Dec;61(3-4):189–219. [PubMed]
  • Schnitzlein HN, Crosby EC. The epithalamus and thalamus of the lungfish, protopterus. J Hirnforsch. 1968;10(4):351–371. [PubMed]
  • Shanmugalingam S, Houart C, Picker A, Reifers F, Macdonald R, Barth A, Griffin K, Brand M, Wilson SW. Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development. 2000 Jun;127(12):2549–2561. [PubMed]
  • Solessio E, Engbretson GA. Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature. 1993 Jul 29;364(6436):442–445. [PubMed]
  • Solessio E, Engbretson GA. Electroretinogram of the parietal eye of lizards: photoreceptor, glial, and lens cell contributions. Vis Neurosci. 1999 Sep-Oct;16(5):895–907. [PubMed]
  • Stein S, Kessel M. A homeobox gene involved in node, notochord and neural plate formation of chick embryos. Mech Dev. 1995 Jan;49(1-2):37–48. [PubMed]
  • STEYN W, WEBB M. The pineal complex in the fish Labeo umbratus. Anat Rec. 1960 Feb;136:79–85. [PubMed]
  • Striedter GF. The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. Brain Behav Evol. 1990;36(6):329–354. [PubMed]
  • Sutherland RJ. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev. 1982 Spring;6(1):1–13. [PubMed]
  • Tamotsu S, Korf HW, Morita Y, Oksche A. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res. 1990 Nov;262(2):205–216. [PubMed]
  • Vallortigara G, Rogers LJ, Bisazza A. Possible evolutionary origins of cognitive brain lateralization. Brain Res Brain Res Rev. 1999 Aug;30(2):164–175. [PubMed]
  • VAN DE KAMER JC. HISTOLOGICAL STRUCTURE AND CYTOLOGY OF THE PINEAL COMPLEX IN FISHES, AMPHIBIANS AND REPTILES. Prog Brain Res. 1965;10:30–48. [PubMed]
  • Van Eden CG, Uylings HB, Van Pelt J. Sex-difference and left-right asymmetries in the prefrontal cortex during postnatal development in the rat. Brain Res. 1984 Jan;314(1):146–153. [PubMed]
  • van Veen T. The parapineal and pineal organs of the elver (glass eel), Anguilla anguilla L. Cell Tissue Res. 1982;222(2):433–444. [PubMed]
  • van Veen T, Ekström P, Borg B, Møller M. The pineal complex of the three-spined stickleback, Gasterosteus aculeatus L.: a light-, electron microscopic and fluorescence histochemical investigation. Cell Tissue Res. 1980;209(1):11–28. [PubMed]
  • van Veen T, Ostholm T, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC. alpha-Transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci U S A. 1986 Feb;83(4):912–916. [PMC free article] [PubMed]
  • Vigh-Teichmann I, Röhlich P, Vigh B, Aros B. Comparison of the pineal complex, retina and cerebrospinal fluid contacting neurons by immunocytochemical antirhodopsin reaction. Z Mikrosk Anat Forsch. 1980;94(4):623–640. [PubMed]
  • Vigh-Teichmann I, Korf HW, Nürnberger F, Oksche A, Vigh B, Olsson R. Opsin-immunoreactive outer segments in the pineal and parapineal organs of the lamprey (Lampetra fluviatilis), the eel (Anguilla anguilla), and the rainbow trout (Salmo gairdneri). Cell Tissue Res. 1983;230(2):289–307. [PubMed]
  • Vigh-Teichmann I, Ali MA, Szél A, Vigh B. Ultrastructure and opsin immunocytochemistry of the pineal complex of the larval Arctic charr Salvelinus alpinus: a comparison with the retina. J Pineal Res. 1991;10(4):196–209. [PubMed]
  • von Dassow G, Schmidt JE, Kimelman D. Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev. 1993 Mar;7(3):355–366. [PubMed]
  • Wang RY, Aghajanian GK. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science. 1977 Jul 1;197(4298):89–91. [PubMed]
  • Wicht H, Northcutt RG. The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain. Brain Behav Evol. 1992;40(1):25–64. [PubMed]
  • Wiechmann AF, Wirsig-Wiechmann CR. Distribution of melatonin receptors in the brain of the frog Rana pipiens as revealed by in vitro autoradiography. Neuroscience. 1993 Jan;52(2):469–480. [PubMed]
  • Wisniewski AB. Sexually-dimorphic patterns of cortical asymmetry, and the role for sex steroid hormones in determining cortical patterns of lateralization. Psychoneuroendocrinology. 1998 Jul;23(5):519–547. [PubMed]
  • Wree A, Zilles K, Schleicher A. Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis. Anat Embryol (Berl) 1981;161(4):419–431. [PubMed]
  • Xiang M, Gan L, Zhou L, Klein WH, Nathans J. Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11950–11955. [PMC free article] [PubMed]
  • Yañez J, Anadon R. Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L.): an experimental study. J Comp Neurol. 1994 Jul 1;345(1):148–160. [PubMed]
  • Yañez J, Anadón R. Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (DiI) study. J Comp Neurol. 1996 Sep 2;372(4):529–543. [PubMed]
  • Yáez J, Meissl H, Anadón R. Central projections of the parapineal organ of the adult rainbow trout (Oncorhynchus mykiss). Cell Tissue Res. 1996 Jul;285(1):69–74. [PubMed]
  • Yáez J, Pombal MA, Anadón R. Afferent and efferent connections of the parapineal organ in lampreys: a tract tracing and immunocytochemical study. J Comp Neurol. 1999 Jan 11;403(2):171–189. [PubMed]
  • Zhu M, Yu X, Ahlberg PE. A primitive sarcopterygian fish with an eyestalk. Nature. 2001 Mar 1;410(6824):81–84. [PubMed]
  • Zilles K, Schleicher A, Wingert F. Quantitative Analyse des Wachstums der Frischvolumina limbischer Kerngebiete im Diencephalon und Mesencephalon einer ontogenetischen Reihe von Albinomäusen. I. Nucleus habenulare. J Hirnforsch. 1976;17(1):1–10. [PubMed]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...