• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntphysLink to Publisher's site
Plant Physiol. Jun 1993; 102(2): 565–571.
PMCID: PMC158813

Developmental Profile of Diacylglycerol Acyltransferase in Maturing Seeds of Oilseed Rape and Safflower and Microspore-Derived Cultures of Oilseed Rape.

Abstract

Diacylglycerol acyltransferase (EC 2.3.1.20) activity was assayed during the maturation of seeds of oilseed rape (Brassica napus L.) and safflower (Carthamus tinctorius L.). Developmental studies were also conducted with microspore-derived embryos of oilseed rape (B. napus L. cv Topas) and an embryogenic microspore-derived cell-suspension culture of winter oilseed rape (B. napus L. cv Jet Neuf). In the maturing seeds, diacylglycerol acyltransferase activity increased to a maximum during rapid accumulation of lipid and declined, thereafter, with seed maturity. In microspore-derived embryos of oilseed rape (cv Topas), high levels of diacylglycerol acyltransferase activity were found throughout the early torpedo to late cotyledonary developmental stages with maximum enzyme specific activity associated with the mid-cotyledonary developmental stage. The cell-suspension culture of winter oilseed rape (cv Jet Neuf) contained 3 to 4% triacylglycerol on a dry weight basis and represented about half of the total lipid. The fatty acid profile of total lipid and triacylglycerol in the cell-suspension culture was similar in samples taken during a 1-year period. The Jet Neuf culture contained diacylglycerol acyltransferase with specific activity similar to that of Topas microspore-derived embryos. Jet Neuf diacylglycerol acyltransferase also displayed an enhanced specificity for erucoyl-CoA over oleoyl-CoA when assayed with 14 [mu]M acyl-coenzyme A in the reaction mixture. The specific activity of diacylglycerol acyltransferase in homogenates prepared from the Jet Neuf culture ranged from 5 to 15 pmol of triacylglycerol min-1 mg-1 of protein when assayed at intervals during a period of 1 year. Thus, the cell-suspension culture may represent an attractive tissue source for purification and characterization of triacyl-glycerol biosynthetic enzymes.

Full Text

The Full Text of this article is available as a PDF (711K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Cao YZ, Huang AH. Acyl coenzyme a preference of diacylglycerol acyltransferase from the maturing seeds of cuphea, maize, rapeseed, and canola. Plant Physiol. 1987 Jul;84(3):762–765. [PMC free article] [PubMed]
  • Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem. 1978 Oct 1;90(1):420–426. [PubMed]
  • Ichihara K, Murota N, Fujii S. Intracellular translocation of phosphatidate phosphatase in maturing safflower seeds: a possible mechanism of feedforward control of triacylglycerol synthesis by fatty acids. Biochim Biophys Acta. 1990 Apr 17;1043(3):227–234. [PubMed]
  • Ichihara K, Takahashi T, Fujii S. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta. 1988 Jan 19;958(1):125–129. [PubMed]
  • Ohlrogge JB, Kuo TM. Control of Lipid Synthesis during Soybean Seed Development: Enzymic and Immunochemical Assay of Acyl Carrier Protein. Plant Physiol. 1984 Mar;74(3):622–625. [PMC free article] [PubMed]
  • Radwan SS, Mangold HK. The lipids of plant tissue cultures. Adv Lipid Res. 1976;14:171–211. [PubMed]
  • Taylor DC, Barton DL, Rioux KP, Mackenzie SL, Reed DW, Underhill EW, Pomeroy MK, Weber N. Biosynthesis of Acyl Lipids Containing Very-Long Chain Fatty Acids in Microspore-Derived and Zygotic Embryos of Brassica napus L. cv Reston. Plant Physiol. 1992 Aug;99(4):1609–1618. [PMC free article] [PubMed]
  • Taylor DC, Weber N, Barton DL, Underhill EW, Hogge LR, Weselake RJ, Pomeroy MK. Triacylglycerol Bioassembly in Microspore-Derived Embryos of Brassica napus L. cv Reston. Plant Physiol. 1991 Sep;97(1):65–79. [PMC free article] [PubMed]
  • Taylor DC, Weber N, Hogge LR, Underhill EW. A simple enzymatic method for the preparation of radiolabeled erucoyl-CoA and other long-chain fatty acyl-CoAs and their characterization by mass spectrometry. Anal Biochem. 1990 Feb 1;184(2):311–316. [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...