• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntphysLink to Publisher's site
Plant Physiol. Jul 1995; 108(3): 919–927.
PMCID: PMC157441

The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents.

Abstract

Transcriptional activation of the soybean (Glycine max) GH2/4 gene (also referred to as Gmhsp26-A) and increase in abundance of the GH2/4 mRNA (also referred to as pCE54) have been previously shown to occur following treatment of soybean seedlings with auxins, nonauxin analogs, heavy metals, and a variety of other agents. To determine whether the GH2/4 promoter is responsive to an array of different agents, we have analyzed the inducibility of the GH2/4 promoter fused to the beta-glucuronidase reporter gene in transgenic tobacco (Nicotiana tabacum) plants. We have shown that a wide variety of chemical agents induce this promoter in a tissue-specific and concentration-dependent manner. In addition, we have used an affinity-purified antibody raised against recombinant GH2/4 protein to show that the GH2/4 protein increases in response to auxin application and is localized in the cytosol of soybean cells. Recombinant GH2/4 protein can be purified to homogeneity on a glutathione-agarose resin, and the purified protein has glutathione S-transferase activity when assayed with the substrate 1-chloro-2,4-dinitrobenzene.

Full Text

The Full Text of this article is available as a PDF (2.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Boot KJM, Van Der Zaal BJ, Velterop J, Quint A, Mennes AM, Hooykaas PJJ, Libbenga KR. Further Characterization of Expression of Auxin-Induced Genes in Tobacco (Nicotiana tabacum) Cell-Suspension Cultures. Plant Physiol. 1993 Jun;102(2):513–520. [PMC free article] [PubMed]
  • Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. [PubMed]
  • Czarnecka E, Nagao RT, Key JL, Gurley WB. Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol. 1988 Mar;8(3):1113–1122. [PMC free article] [PubMed]
  • Daniel V. Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol. 1993;28(3):173–207. [PubMed]
  • Dominov JA, Stenzler L, Lee S, Schwarz JJ, Leisner S, Howell SH. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell. 1992 Apr;4(4):451–461. [PMC free article] [PubMed]
  • Droog FN, Hooykaas PJ, Libbenga KR, van der Zaal EJ. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol. 1993 Mar;21(6):965–972. [PubMed]
  • Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J. 1993 Sep;4(3):433–443. [PubMed]
  • Goldsbrough AP, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J. 1993 Apr;3(4):563–571. [PubMed]
  • Hagen G, Guilfoyle TJ. Rapid induction of selective transcription by auxins. Mol Cell Biol. 1985 Jun;5(6):1197–1203. [PMC free article] [PubMed]
  • Hagen G, Martin G, Li Y, Guilfoyle TJ. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol. 1991 Sep;17(3):567–579. [PubMed]
  • Hagen G, Uhrhammer N, Guilfoyle TJ. Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem. 1988 May 5;263(13):6442–6446. [PubMed]
  • A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. [PubMed]
  • Horsch RB, Klee HJ. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4428–4432. [PMC free article] [PubMed]
  • Imai Y, Matsushima Y, Sugimura T, Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991 May 25;19(10):2785–2785. [PMC free article] [PubMed]
  • Ishihama A, Saitoh T. Subunits of RNA polymerase in function and structure. IX. Regulation of RNA polymerase activity by stringent starvation protein (SSP). J Mol Biol. 1979 Apr 25;129(4):517–530. [PubMed]
  • Itzhaki H, Maxson JM, Woodson WR. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8925–8929. [PMC free article] [PubMed]
  • Katagiri F, Chua NH. Plant transcription factors: present knowledge and future challenges. Trends Genet. 1992 Jan;8(1):22–27. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Mannervik B, Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. [PubMed]
  • Shen WJ, Forde BG. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. 1989 Oct 25;17(20):8385–8385. [PMC free article] [PubMed]
  • Takahashi Y, Ishida S, Nagata T. Function and modulation of expression of auxin-regulated genes. Int Rev Cytol. 1994;152:109–144. [PubMed]
  • Takahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9279–9283. [PMC free article] [PubMed]
  • Takahashi Y, Kusaba M, Hiraoka Y, Nagata T. Characterization of the auxin-regulated par gene from tobacco mesophyll protoplasts. Plant J. 1991 Nov;1(3):327–332. [PubMed]
  • Takahashi Y, Nagata T. parB: an auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):56–59. [PMC free article] [PubMed]
  • Taylor JL, Fritzemeier KH, Häuser I, Kombrink E, Rohwer F, Schröder M, Strittmatter G, Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):72–77. [PubMed]
  • Ulmasov T, Hagen G, Guilfoyle T. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol. 1994 Nov;26(4):1055–1064. [PubMed]
  • van der Zaal EJ, Droog FN, Boot CJ, Hensgens LA, Hoge JH, Schilperoort RA, Libbenga KR. Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol. 1991 Jun;16(6):983–998. [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links