• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntphysLink to Publisher's site
Plant Physiol. Apr 1995; 107(4): 1091–1096.
PMCID: PMC157241

Tissue-Specific Expression of Germin-Like Oxalate Oxidase during Development and Fungal Infection of Barley Seedlings.

Abstract

Oxalate oxidase activity was detected in situ during the development of barley seedlings. The presence of germin-like oxalate oxidase was confirmed by immunoblotting using an antibody directed against wheat germin produced in Escherichia coli, which is shown to cross-react with barley (Hordeum vulgare) oxalate oxidase and by enzymatic assay after electrophoresis of the protein extracts on polyacrylamide gels. In 3-d-old barley seedlings, oxalate oxidase is localized in the epidermal cells of the mature region of primary roots and in the coleorhiza. After 10 d of growth, the activity is detectable only in the coleorhiza. Moreover, we show that oxalate oxidase is induced in barley leaves during infection by the fungus Erysiphe graminis f. sp. hordei but not by wounding. Thus, oxalate oxidase is a new class of proteins that responds to pathogen attack. We propose that oxalate oxidase could have a role in plant defense through the production of H2O2.

Full Text

The Full Text of this article is available as a PDF (2.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Apostol I, Heinstein PF, Low PS. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. [PMC free article] [PubMed]
  • Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. [PubMed]
  • Devlin WS, Gustine DL. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol. 1992 Nov;100(3):1189–1195. [PMC free article] [PubMed]
  • Dratewka-Kos E, Rahman S, Grzelczak ZF, Kennedy TD, Murray RK, Lane BG. Polypeptide structure of germin as deduced from cDNA sequencing. J Biol Chem. 1989 Mar 25;264(9):4896–4900. [PubMed]
  • Höfte H, Desprez T, Amselem J, Chiapello H, Rouzé P, Caboche M, Moisan A, Jourjon MF, Charpenteau JL, Berthomieu P, et al. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 1993 Dec;4(6):1051–1061. [PubMed]
  • Hurkman WJ, Lane BG, Tanaka CK. Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots. Plant Physiol. 1994 Feb;104(2):803–804. [PMC free article] [PubMed]
  • Lane BG. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J. 1994 Mar 1;8(3):294–301. [PubMed]
  • Lane BG, Bernier F, Dratewka-Kos E, Shafai R, Kennedy TD, Pyne C, Munro JR, Vaughan T, Walters D, Altomare F. Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain Physarum spherulins. J Biol Chem. 1991 Jun 5;266(16):10461–10469. [PubMed]
  • Lane BG, Cuming AC, Frégeau J, Carpita NC, Hurkman WJ, Bernier F, Dratewka-Kos E, Kennedy TD. Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur J Biochem. 1992 Nov 1;209(3):961–969. [PubMed]
  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC. Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem. 1993 Jun 15;268(17):12239–12242. [PubMed]
  • Legrand M, Kauffmann S, Geoffroy P, Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754. [PMC free article] [PubMed]
  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994 Aug 12;78(3):449–460. [PubMed]
  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. [PMC free article] [PubMed]
  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJ, Cornelissen BJ. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell. 1991 Jun;3(6):619–628. [PMC free article] [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...