Logo of plntcellLink to Publisher's site
Plant Cell. Nov 1997; 9(11): 1935–1949.
PMCID: PMC157048

Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways.

Abstract

To dissect genetically the complex network of osmotic and cold stress signaling, we constructed lines of Arabidopsis plants displaying bioluminescence in response to low temperature, drought, salinity, and the phytohormone abscisic acid (ABA). This was achieved by introducing into Arabidopsis plants a chimeric gene construct consisting of the firefly luciferase coding sequence (LUC) under the control of the stress-responsive RD29A promoter. LUC activity in the transgenic plants, as assessed by using in vivo luminescence imaging, faithfully reports the expression of the endogenous RD29A gene. A large number of cos (for constitutive expression of osmotically responsive genes), los (for low expression of osmotically responsive genes), and hos (for high expression of osmotically responsive genes) mutants were identified by using a high-throughput luminescence imaging system. The los and hos mutants were grouped into 14 classes according to defects in their responses to one or a combination of stress and ABA signals. Based on the classes of mutants recovered, we propose a model for stress signaling in higher plants. Contrary to the current belief that ABA-dependent and ABA-independent stress signaling pathways act in a parallel manner, our data reveal that these pathways cross-talk and converge to activate stress gene expression.

Full Text

The Full Text of this article is available as a PDF (2.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 1994 Mar;24(5):701–713. [PubMed]
  • Bohnert HJ, Nelson DE, Jensen RG. Adaptations to Environmental Stresses. Plant Cell. 1995 Jul;7(7):1099–1111. [PMC free article] [PubMed]
  • Bray EA. Molecular Responses to Water Deficit. Plant Physiol. 1993 Dec;103(4):1035–1040. [PMC free article] [PubMed]
  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. [PubMed]
  • Dijkwel PP, Kock PAM, Bezemer R, Weisbeek PJ, Smeekens SCM. Sucrose Represses the Developmentally Controlled Transient Activation of the Plastocyanin Gene in Arabidopsis thaliana Seedlings. Plant Physiol. 1996 Feb;110(2):455–463. [PMC free article] [PubMed]
  • Gilmour SJ, Thomashow MF. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991 Dec;17(6):1233–1240. [PubMed]
  • Gosti F, Bertauche N, Vartanian N, Giraudat J. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet. 1995 Jan 6;246(1):10–18. [PubMed]
  • Guiltinan MJ, Marcotte WR, Jr, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. [PubMed]
  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3903–3907. [PMC free article] [PubMed]
  • Horvath DP, McLarney BK, Thomashow MF. Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiol. 1993 Dec;103(4):1047–1053. [PMC free article] [PubMed]
  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11274–11279. [PMC free article] [PubMed]
  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JA, Koornneef M. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J. 1996 Oct;10(4):655–661. [PubMed]
  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. [PubMed]
  • Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell. 1997 May;9(5):759–771. [PMC free article] [PubMed]
  • Liu J, Zhu JK. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol. 1997 Jun;114(2):591–596. [PMC free article] [PubMed]
  • Madhani HD, Fink GR. Combinatorial control required for the specificity of yeast MAPK signaling. Science. 1997 Feb 28;275(5304):1314–1317. [PubMed]
  • Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. [PubMed]
  • Meyer K, Leube MP, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. [PubMed]
  • Millar AJ, Short SR, Chua NH, Kay SA. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell. 1992 Sep;4(9):1075–1087. [PMC free article] [PubMed]
  • Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science. 1995 Feb 24;267(5201):1161–1163. [PubMed]
  • Nishihama R, Banno H, Shibata W, Hirano K, Nakashima M, Usami S, Machida Y. Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol. 1995 Jul;36(5):749–757. [PubMed]
  • Nordin K, Vahala T, Palva ET. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1993 Feb;21(4):641–653. [PubMed]
  • Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science. 1997 Jun 13;276(5319):1702–1705. [PubMed]
  • Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science. 1996 Dec 13;274(5294):1900–1902. [PubMed]
  • Shen Q, Ho TH. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell. 1995 Mar;7(3):295–307. [PMC free article] [PubMed]
  • Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. [PMC free article] [PubMed]
  • Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):1035–1040. [PMC free article] [PubMed]
  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993 Nov;5(11):1529–1539. [PMC free article] [PubMed]
  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet. 1994 Aug 15;244(4):331–340. [PubMed]
  • Valvekens D, Montagu MV, Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. [PMC free article] [PubMed]
  • Vasil V, Marcotte WR, Jr, Rosenkrans L, Cocciolone SM, Vasil IK, Quatrano RS, McCarty DR. Overlap of Viviparous1 (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation. Plant Cell. 1995 Sep;7(9):1511–1518. [PMC free article] [PubMed]
  • Wu SJ, Ding L, Zhu JK. SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell. 1996 Apr;8(4):617–627. [PMC free article] [PubMed]
  • Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet. 1993 Jan;236(2-3):331–340. [PubMed]
  • Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994 Feb;6(2):251–264. [PMC free article] [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...