• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. Oct 1997; 9(10): 1859–1868.
PMCID: PMC157027

Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression.

Abstract

In Arabidopsis, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) and requires protein biosynthesis for ABA-dependent gene expression. Previous experiments established that a 67-bp DNA fragment of the rd22 promoter is sufficient for dehydration- and ABA-induced gene expression and that this DNA fragment contains two closely located putative recognition sites for the basic helix-loop-helix protein MYC and one putative recognition site for MYB. We have carefully analyzed the 67-bp region of the rd22 promoter in transgenic tobacco plants and found that both the first MYC site and the MYB recognition site function as cis-acting elements in the dehydration-induced expression of the rd22 gene. A cDNA encoding a MYC-related DNA binding protein was isolated by DNA-ligand binding screening, using the 67-bp region as a probe, and designated rd22BP1. The rd22BP1 cDNA encodes a 68-kD protein that has a typical DNA binding domain of a basic region helix-loop-helix leucine zipper motif in MYC-related transcription factors. The rd22BP1 protein binds specifically to the first MYC recognition site in the 67-bp fragment. RNA gel blot analysis revealed that transcription of the rd22BP1 gene is induced by dehydration stress and ABA treatment, and its induction precedes that of rd22. We have reported a drought- and ABA-inducible gene that encodes the MYB-related protein ATMYB2. In a transient transactivation experiment using Arabidopsis leaf protoplasts, we demonstrated that both the rd22BP1 and ATMYB2 proteins activate transcription of the rd22 promoter fused to the beta-glucuronidase reporter gene. These results indicate that both the rd22BP1 (MYC) and ATMYB2 (MYB) proteins function as transcriptional activators in the dehydration- and ABA-inducible expression of the rd22 gene.

Full Text

The Full Text of this article is available as a PDF (2.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J. 1994 Mar;5(3):421–427. [PubMed]
  • Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 1994 Mar;24(5):701–713. [PubMed]
  • Blackwell TK, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science. 1990 Nov 23;250(4984):1104–1110. [PubMed]
  • Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211–1217. [PubMed]
  • Consonni G, Viotti A, Dellaporta SL, Tonelli C. cDNA nucleotide sequence of Sn, a regulatory gene in maize. Nucleic Acids Res. 1992 Jan 25;20(2):373–373. [PMC free article] [PubMed]
  • Ferré-D'Amaré AR, Prendergast GC, Ziff EB, Burley SK. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature. 1993 May 6;363(6424):38–45. [PubMed]
  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. [PMC free article] [PubMed]
  • Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VL. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 1990 Aug;9(8):2517–2522. [PMC free article] [PubMed]
  • Grotewold E, Drummond BJ, Bowen B, Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994 Feb 11;76(3):543–553. [PubMed]
  • Guiltinan MJ, Marcotte WR, Jr, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. [PubMed]
  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. [PubMed]
  • Ingram J, Bartels D. THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):377–403. [PubMed]
  • Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 1996 Feb;30(3):679–684. [PubMed]
  • Larkin JC, Oppenheimer DG, Lloyd AM, Paparozzi ET, Marks MD. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development. Plant Cell. 1994 Aug;6(8):1065–1076. [PMC free article] [PubMed]
  • Ludwig SR, Wessler SR. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell. 1990 Sep 7;62(5):849–851. [PubMed]
  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. [PMC free article] [PubMed]
  • Ma PC, Rould MA, Weintraub H, Pabo CO. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell. 1994 May 6;77(3):451–459. [PubMed]
  • Perrot GH, Cone KC. Nucleotide sequence of the maize R-S gene. Nucleic Acids Res. 1989 Oct 11;17(19):8003–8003. [PMC free article] [PubMed]
  • Roth BA, Goff SA, Klein TM, Fromm ME. C1- and R-dependent expression of the maize Bz1 gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell. 1991 Mar;3(3):317–325. [PMC free article] [PubMed]
  • Shen Q, Zhang P, Ho TH. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell. 1996 Jul;8(7):1107–1119. [PMC free article] [PubMed]
  • Shinozaki K, Yamaguchi-Shinozaki K, Urao T, Koizumi M. Nucleotide sequence of a gene from Arabidopsis thaliana encoding a myb homologue. Plant Mol Biol. 1992 Jun;19(3):493–499. [PubMed]
  • Singh H, LeBowitz JH, Baldwin AS, Jr, Sharp PA. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell. 1988 Feb 12;52(3):415–423. [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Tuerck JA, Fromm ME. Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes. Plant Cell. 1994 Nov;6(11):1655–1663. [PMC free article] [PubMed]
  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993 Nov;5(11):1529–1539. [PMC free article] [PubMed]
  • Urao T, Yamaguchi-Shinozaki K, Mitsukawa N, Shibata D, Shinozaki K. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol Biol. 1996 Nov;32(3):571–576. [PubMed]
  • Valvekens D, Montagu MV, Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. [PMC free article] [PubMed]
  • Yamaguchi-Shinozaki K, Mundy J, Chua NH. Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol. 1990 Jan;14(1):29–39. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links
  • Taxonomy
    Taxonomy
    Related taxonomy entry
  • Taxonomy Tree
    Taxonomy Tree

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...