• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntcellLink to Publisher's site
Plant Cell. May 1997; 9(5): 703–715.
PMCID: PMC156950

Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development.

Abstract

A maternally determined seed defect has been obtained by downregulation of the petunia MADS box genes Floral Binding Protein 7 (FBP7) and FBP11. These genes have been previously shown to play central roles in the determination of ovule identity. Aberrant development of the seed coat and consequent degeneration of the endosperm have been observed in transgenic plants in which these two genes are downregulated by cosuppression. Analysis of the expression pattern of FBP7 and FBP11 and genetic analysis confirmed the maternal inheritance of the phenotype. The FBP7 promoter was cloned and fused to reporter genes. One of these reporter genes was the BARNASE gene for targeted cell ablation. Our results indicate that FBP7 promoter activity is restricted to the seed coat of developing seeds and that it is completely silent in the gametophytically derived tissues. The mutants used in this study provided a unique opportunity to investigate one of the poorly understood aspects of seed development: the interaction of embryo, endosperm, and maternal tissues.

Full Text

The Full Text of this article is available as a PDF (3.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Angenent GC, Busscher M, Franken J, Mol JN, van Tunen AJ. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell. 1992 Aug;4(8):983–993. [PMC free article] [PubMed]
  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995 Oct;7(10):1569–1582. [PMC free article] [PubMed]
  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. [PubMed]
  • Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. [PubMed]
  • Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 1995 Nov;7(11):1859–1868. [PMC free article] [PubMed]
  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. [PMC free article] [PubMed]
  • Feinberg AP, Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. [PubMed]
  • Flanagan CA, Ma H. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant arabidopsis flowers. Plant Mol Biol. 1994 Oct;26(2):581–595. [PubMed]
  • Gaiser JC, Robinson-Beers K, Gasser CS. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. Plant Cell. 1995 Mar;7(3):333–345. [PMC free article] [PubMed]
  • Gasser CS, Robinson-Beers K. Pistil Development. Plant Cell. 1993 Oct;5(10):1231–1239. [PMC free article] [PubMed]
  • Heck GR, Perry SE, Nichols KW, Fernandez DE. AGL15, a MADS domain protein expressed in developing embryos. Plant Cell. 1995 Aug;7(8):1271–1282. [PMC free article] [PubMed]
  • A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. [PubMed]
  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell. 1994 Sep;6(9):1211–1225. [PMC free article] [PubMed]
  • Klucher KM, Chow H, Reiser L, Fischer RL. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lopes MA, Larkins BA. Endosperm origin, development, and function. Plant Cell. 1993 Oct;5(10):1383–1399. [PMC free article] [PubMed]
  • Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW. Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis. Plant Cell. 1994 Mar;6(3):333–349. [PMC free article] [PubMed]
  • Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS. Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5761–5765. [PMC free article] [PubMed]
  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell. 1995 Dec 1;83(5):735–742. [PubMed]
  • Robinson-Beers K, Pruitt RE, Gasser CS. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. [PMC free article] [PubMed]
  • Rosenberg AH, Lade BN, Chui DS, Lin SW, Dunn JJ, Studier FW. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. [PubMed]
  • Sakai H, Medrano LJ, Meyerowitz EM. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature. 1995 Nov 9;378(6553):199–203. [PubMed]
  • Tsuchimoto S, van der Krol AR, Chua NH. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell. 1993 Aug;5(8):843–853. [PMC free article] [PubMed]
  • van Tunen AJ, Mur LA, Brouns GS, Rienstra JD, Koes RE, Mol JN. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene. Plant Cell. 1990 May;2(5):393–401. [PMC free article] [PubMed]
  • Verwoerd TC, Dekker BM, Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. [PMC free article] [PubMed]
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. [PubMed]

Articles from The Plant Cell are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...