1. Sullivan J., Joyce P. Model selection in phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2005;36:445–466.

2.

Posada D., Buckley T.R. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004;53:793–808. [PubMed]3.

Johnson J.B., Omland K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2003;19:101–108. [PubMed]4.

Posada D., Crandall K.A. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. [PubMed]5. Swofford D.L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) 2000. Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

6. Posada D. Selecting models of evolution. In: Vandemme A., Salemi M., editors. The Phylogenetic Handbook. Cambridge, UK: Cambridge University Press; 2003. pp. 256–282.

7. Posada D. Using Modeltest and PAUP* to select a model of nucleotide substitution. In: Baxevanis A.D., Davison D.B., Page R.D.M., Petsko G.A., Stein L.D., Stormo G.D., editors. Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; 2003. pp. 6.5.1–6.5.14.

8.

Frati F., Simon C., Sullivan J., Swofford D.L. Gene evolution and phylogeny of the mitochondrial cytochrome oxidase gene in *Collembola*. J. Mol. Evol. 1997;44:145–158. [PubMed]9. Huelsenbeck J.P., Crandall K.A. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 1997;28:437–466.

10. Akaike H. A new look at the statistical model identification. IEEE Trans. Aut. Control. 1974;19:716–723.

11. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B.N., Csaki F., editors. Second International Symposium on Information Theory. Budapest: Akademiai Kiado; 1973. pp. 267–281.

12. Sakamoto Y., Ishiguro M., Kitagawa G. NY: Springer; 1986. Akaike Information Criterion Statistics; p. 320.

13. Sugiura N. Further analysis of the data by Akaike's information criterion and the finite corrections. Comm. Statist. Theor. Meth. 1978;A7:13–26.

14. Hurvich C.M., Tsai C.-L. Regression and time series model selection in small samples. Biometrika. 1989;76:297–307.

15. Schwarz G. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464.

16. Kass R.E., Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Amer. Stat. Assoc. 1995;90:928–934.

17. Raftery A.E. Bayes Factors and BIC: comment on ‘A critique of the Bayesian information criterion for model selection’ Sociol. Met. Res. 1999;27:411–427.

18. Weakliem D.L. A critique of the bayesian information criterion for model selection. Sociol. Met. Res. 1999;27:359–397.

19. Forster M.R., Sober E. Why likelihood? In: Taper M., Lele S., editors. The Nature of Scientific Evidence: Statistical, Philosophical, and Empirical Considerations. Chicago: University of Chicago Press; 2004. pp. 153–190.

20. Burnham K.P., Anderson D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. NY: Springer-Verlag; 2003. p. 488.

21.

Abascal F., Zardoya R., Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–2105. [PubMed]22.

Maddison D.R., Swofford D.L., Maddison W.P. NEXUS: an extensible file format for systematic information. Syst. Biol. 1997;46:590–621. [PubMed]23. Kingman J.F.C. The coalescent. Stochastic Process Appl. 1982;13:235–248.

24.

Hasegawa M., Kishino K., Yano T. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174. [PubMed]25.

Yang Z. Among-site rate variation and its impact on phylogenetic analysis. Trends Ecol. Evol. 1996;11:367–372. [PubMed]